Dﬂﬂ FILE COPY

SECURITY CLASSIFICATION OF THig PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION
l Unclassified

1b. RESTRICTIVE MARKINGS

T =

28 SECURITY CLASSIFICATIAN

3. DISTRIBY

TFRON STATEMENT K

_Approved for public releaset
-~ Distribution Unlimited

- AD-A220 135

5. MONITORING QRGANIZATION REPORT NUMBERIS)

6a. NAME QF PERFORMING ORGANIZATION

l Brown University

b. OFFICE SYMBOL
{1/ applicable)

7s. NAME OF MONITORING ORGANIZATION

ONR Resident Representative

6c. ADORESS (Cily. State and ZIP Code)
Division of Engineering
Box D

, Providence, Rhode Island 02912

Cambridge,

7b. ADDRESS (City, State and ZIP Codey
Harvard Univ., Holyoke Ctr, 2nd Floor

1350 Massachusetts Ave.
MA 02138-4993

8s. NAME OF FUNDING/SPONSORING
l ORGANIZATION

Dept. of the Navy

8b. OFFICE SYMBOL
(1f applicabie!

N00014-87-K-2023

9. PAOCUREMENT INSTRUMENT IOENTIFICATION NUMBER

8c. ADORESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS,

4555 Overlook Avenue, SW PROGRAM PROJECT TASK WORK UNIT
| Washington, DC 20375 ELEMENT NO. NO. NO. NO
T TITLE unima: atcurllyTClauthcguon ! Desi ’ 51-14325
1 ') Deyelopment Tesy bed,and Eplignged Desien

12 PEASONAL AUTHQRIS)

13a. TYPE OF REPORT 13b. TIME COVERED

Final Technical

From __06/1/8%0 01/31/88

14. DATE OF REPQRT (Yr. Mo., Day)

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

]
!

17. . CQOSAT!I CODES
FIELD GROUP

SuUB8. GA.

(
i_ 1

18. SUBJECT TERMS jContinue on reverse f nccessary and idenify by block number)

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

DTIC

ELECTE #®
APRO 5 1990 §

D

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED (I same as apt (J oTic usens (J

21. ABSTRACT SECURITY CLASSIFICATION

22s. NAME OF RESPONSIBLE INDIVIDUAL
p. C. A, Cultcrman

22b. TELEPHONE NUMBER
tinclude Arca Code)

22¢ OFFICE SYmBOL

J0 FORM 1473, 83 APR

Q0 04 02 098

1 JAN 7315 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

A Development Testbed for ALPS-based Systems

Final Technical Report

1 October 1988

Dick C. A. Bulterman, Principal Investigator
Division of Engineering

Brown University

Providence, RI 02912

STATEMENT "A" per Y.S. (Chris) Wu
NRL/Code 8122

TELECON 4/5/90

Grant #N00014-87-1€2023

Naval Research Laboratory
Washington, D.C.

Y. S. Wu, Contract Scientific Officer

VG

|
NTIS
DTiC
Unan.

By

..

i Acces

Jystit:
.

Dis tbzuo /m

ion For
CRAR g
TAB O
W00 Ted 0
Catic
LT T

call

R e T pp—

e i

Avaiabiety Codes

S‘;.‘t’CK)‘

P—.——~._

. Report Overview

. Activity Summary

Table of Contents

..

--

2.1. Updated d-ALPS Simulation Model. ...coovroeriiiiiiciiiiniinciinceneee,
2.2. Task Distribution and Resource Allocation for d-ALPS Systems

. Personnelccooverreveeeennnnne

..

. Index of Reports and Publications ...c.ccccceeercericciveresrneecesrneeesssnneessseessssssnsessans

. Detailed Activity Reports

5.1. Appendix A

--

..

.
-l

(3]

ABSTRACT o

~~The work performed under this contract extended and'\expanded the/princip/al
investigator’s previous work on defining*a distributed architecture model that would
support digital signal processing applications. Quf efforts were concentrated on two
aspects: the development of a reliable simulation facility that would more accurately
predict the performance of our distributed system (known as the d-ALPS frame-
work), and the exploration of models of analysis for task distribution and resource
allocation within that framework.

The first portion eL-workﬁwopkr resulted in a set of computer programs that
interacted within our existing behavioral model for support d-ALPS applications.
The simulator itself is a flexible system that allows a variable degree of report infor-
mation to be generated for specification execution sequences. It was written to be
relatively portable within a UNIX-based environment.

The second portion of this work®resulted in a master’s-level thesis that discussed
analysis methods for d-ALPS architectures in terms of four broad analytical tech-
niques: static analysis, state generation analysis, schedule simulation, and architec-
tural simulation. Each of these methodologies is developed in terms of a series of
relevant application models that highlight the strengths and weaknesses of the d-
ALPS approach. :

Our original research intentions under this grant were curtailed due to the prin-
cipal investigator’s departure from Brown University and a resulting limiting of fund-
ing from the granting agency. It is expected that future work on this project will
occur within the Naval Research Laboratory and at the Center for Mathematics and
Computer Science, in Amsterdam.

1. Report Overview

This final report will summarize our activity on the NRL-supported research
project entitled: A Development Testbed for ALPS-based Systems (Grant #N00014-
87-K2023). This research was a follow-on contract to our original NRL-sponsored
work in grants N0O0014-85-K2002 and NO0014-86-K2015. The research under this
grant took place between 1 June 1987 and 31 December 1987.

2. Activity Summary

The work covered under this grant spanned a period of seven months. This
period represented a unilateral shortening of the contract period by the contract
sponsor. As a result, only a portion of the originally-planned research was carried
out under this contract. The work that was performed consisted of two projects: the
development of a reliable simulator for ALPS-based systems, and the analysis of
ALPS architectures with regard to task distribution and resource allocation. The
activity under this grant is summarized in the following two sections. A detailed
description of the work involved in presented in Appendix A.

2.1. Updated d-ALPS Simulation Model.

Of the two major thrusts of our work, the first was to prepare an updated simu-
lation facility to conform to the d~-ALPS model developed under contract NOOO14-
86-2015. This work, which resulted in a software model of the communications and
processing architecture for d-ALPS was completed in December of 1987. The source
code and executable versions of this updated simulator have been transferred to
NRL, along with the relevant documentation.

The nature of this work precluded any public publications or presentations.

2.2. Task Distribution and Resource Allocation for d-ALPS Systems

Along with the development of a software simulation facility, a project was ini-
tiated to study the effect of task distribution and resource modelling within the d-
ALPS framework. This work resulted in the development of a Master’s thesis, a
copy of which is attached as Appendix A. Interested readers are cncouraged to con-
sult this comprehensive document.

The work describes four methodologies that were developed to support the
investigation of allocation and scheduling problems for a class of distributed process-
ing systems that were based on the d-ALPS model. Two perspectives on scheduling
were presented: that of the configurer, who supplies an underlying application and
must find a suitable configuration architecture, and second, the systems architect,
who is interested in investigating scheduling and allocation issues over the entire class
of ALPS applications.

In order to support the work, four investigation approaches were developed:
static analysis, state generation, schedule simulation, and archilcctural simulation.
Each of these methodologics is developed in terms of a series of relevant application
models that highlight the strengths and weaknesses of the d-ALPS approach.

-1~

The descriptions of the results of this work depend heavily on the description of
the d-ALPS framework. This information, including an overview of the d-ALPS
model, are presented in appendix.

3.. Personnel

The following personnel were actively engaged in research associated with this
grant:

D. C. A. Bulterman, Principal Investigator:

Professor Bulterman has been the technical director of the research described in
this report.

D. L. Leibholz, Graduate Student and RA:

Mr. Leibholz served as the lead technical research staff member on this project
and worked directly on the analysis of task distribution and resource allocation
aspects of the d-ALPS models. He received his Master’s degree in May of 1988.

R. McConnell, Research Engineer:

Mr. McConnel wrote the updated d-ALPS simulator and directed independent
studies projects concerning a prototype implementation of the d-ALPS network.
He joined the technical staff of the NRL is January 1988.

4. Index of Reports and Publications

[1] D. L. Leibholz, “Methods of Analysis of Task Distribution and Resource Alloca-
tion in a Class of Distributed Control Multiprocessor Architectures”, Masters
Thesis, Brown University, May 1988.

-2-

5. Detailed Activity Reports

5.1. Appendix A

-3-

Methods of Analysis of Task Distribution and
Resource Allocation in a Class of Distributed
Control Multiple Processor Architectures

by

Daniel Leibholz

Sc.B. Brown Univcrsity /986

Thesis

Submitted in partial fulfillment of the rcquirements for the
Degree of Master of Science in the Division of
Engincering at Brown University

May 1988

Abstract

This thesis describes four methodologics that have been developed to support the
investigation of allocation and scheduling problems for a class of distributed processing sys-
tems. The class of systems is based on the ALPS (Altemative Low-level Primitive Struc-
turcs) mcthodology that uses a distributed and dynamic task distribution mcchanism to
assign clements of an application algorithm to an architecture consisting of special-purpose
processing primitves.

Two perspectives on scheduling and allocation are presented. They are the perspec-
uves of the configurcr, who is supplied an application algorithm and an specific underlying
ALPS architecture and must find a suitable configuration architecture, and the architect, who
is interested in investigating scheduling and allocation issues over the entire class of ALPS
architectures and in independence of the application domain. The configurer utilizes
application-specific, explicit performance criteria, such as task latency and throughput, to
guide a configuration. The architect is interested in application-general implicit performance
criteria to guide the analysis of an existing ALPS architecture and the design of future
underlying architectures.

In support of these perspectives, four investigation approaches have been developed.
Static analysis employs graph expansion and analysis methods tc¢ gain insights into an appli-
cation task graph. State generation demonstrates that, provided with gross simplifications of
the application task graph and the architecture, optimal solutions can be machine-generated.
The computation complexity and lack of extensibility of this method validates the final two
methodologies. Schedule simulation provides large-grained comparison of task mapping
methodologies. Architectural simulation, as implemented, is high level simulation of an
ALPS protocol which is part of the distributed-ALPS (d-ALPS) architecture. It provides a
configurer with performance evaluation of a configuration allocation and allows an architect
to analyze the d-ALPS architecture. The d-ALPS architecture is uscd as a model of an
existing ALPS architectural implementation. This thesis demonstrates, via this model, that
the four general ALPS investigation methodologies can be applied to the analysis of proto-
col and representation pathologies of a specific ALPS architecture.

1.

9

Introduction
1.1, Thesis Scope

1.1.1. Task Decfinition Paramcters
1.1.2. Architecture Parameters
1.1.3. Task Mapping Parameters
1.1.4. Pcrformance Paramcters

. Background

2.1.2. Heuristic

2.4.1. Structure
2.5. Conclusions

. Problem Specification

Table of Contents

..

..
...
..

..

2.1. An Overview of Allocation and Scheduling Analysis Techniques
2.1.1. Graph Theoretic/Enumerative Models

....................
...

Models

..

..........................

..

Of ThE SCREAUICTS oot e ertes e eetae e essaeasssesas

..

...

3.1. Parameter Investigation PEISPECLVESovvivvvivieeniinriessneesessessessseessesssessnens
3.2. System Performance SPECifiCalioNcccoievecvieeviirereenineneeiiesreseeseesseesssesseanes

3.2.1. Latency

..

3.2.2. TRIOUZNPUL .ottt sttt senreresesse e srea e ss e sasssresasisnne sreans
3.2.3. ALIOCAUON .eeuiiiieiieiieiertn e sttitnters e e ree e saessaesae e ssssassasseesnsnssssssesaessaesesane
3.2.4. REHADILLY .oooviiriie ittt ettt et se s sae e e en s aebs e snes

3.3. Task Definiti
3.3.1. Directed

ON ParamMeELerSoooociiiiiieiie e ciiiis e csreeee et teserssesanmeteesaeseeen senmanes
Graph NOLAUONccccoieiiiiiceeie ettt e e saes s saes e e seeenes

3.3.2. Graph WEIBHIS ...ttt cvtesreesre s eas s esseste e e s srenanen
3.3.3. S0Urces aNd SINKS ...cocevivuiceiiiinriinieieieeeressrsaesaee e e eenesssoesrens s e seeessesssnsons
3.3.4. Graph Dctailing ParamMeterscccccevcveeeeteeviinnereneenneeinee s eseesressveeeesss
3.3.4.1. LinK OFACINE .eoeciiiiiiiiiiiriree e ettt ssrccseeesseee e et saeesaeeens seneessensesstesns
3.3.4.2. LiNK PHIOTIUCS .eoeeiiiiiniiiiieiienreeieseerereessnesestnreseeeseneeessness souesssesasssnnoses
3.3.4.3. Delay and Precedence INSEILIONocceceeniiesiieeeeeieeeeeeeseeeeeseeesnessssessses

3.4. Architectural

PaFaMCIEIS oottt eettereeeeeeee s s e essasemaeseesessensssnaeenes

3.4.1. Resource Pool Size and COMPOSItIONcccoueeeevericreieceieecerereseseecsssseessanens
3.4.2. Communications CAPACILY .ivuviviiiiiieeieniiiiree et eeraeesenesssressssees soes sesesasesansnes

3.4.3. Mcmory

...

00 N 3 h W H o

12
12
15
17
23
24
24
28
29
31

32
34
35
35
37
37
38
40
40
41
42
42
43
44

45
46
49
49

- vi

3.5. Task Mupping Specification ...,
3.5.1. Data QUeucing oo
3.5.2. Queue ServiCing oveeeeiiiereniiees
3.5.3. Priority Bidding ...cccovveiiiiiniiiien.

3.6. ConClUSIONcoieviviiircrenirr e rree e

4. Problem S€WP v,
4.1, Static AnalYSIS v e
4.2. State/Control Strategy Generation ...
4.3, High Level Scheduling Simulation ...
4.4, Architectural Simulationoocoevevieenn

5. Static ANalySiS i
5.1. Overview of Mcthods and Objectives
5.2. Graph Transformationsc.cccceevuvvenenaacs

5.2.1. Resolving Send and Receive Orders

5.2.2. Deadlock Detectionccceveeeeeerinennnce
5.2.3. Latency Determination .o...eeeeeveeeneee.
5.3. Example Analvsis ..o
5.4, Conclusionccoeviiiiiiiieminree e

6. State GeneratioN ...coceeevervreerireriresirrerreneienininane
6.1. State Diagram Representation
6.2. State Generalionvvevueeveeeereremversseennen

7. Schedule Simulationccccvvniiviiiineienensnnnn.
7.1. Representation by Sequencesc.o....
7.2. Schedule Simulationccooceiveceininnenne

7.2.1. Complexityoccceeeeruvrerceenaieecsinraace
7.2.2. Delay Heunisticscoceeveveerccnciiienne
7.2.3. Cost Based Heuristicsccccccceviinnns

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

7.3. Architectural Implementation Considerationsc.coveevnvennenveninnriieneeicanne.

7.3.1. Processor Binding ..o
7.3.2. Commit Groupsccceeeerevevcesruenaeens
7.3.3. INteZrationcccccvvemmirerimnninneinennns
7.4, An Examplecocoiiiiciiieiniinnieen
7.5. Results and Conclusionscoccevvvvenes

8. Architectural Simulationcccoineinieinnnnn
8.1. Example Configuration Studyccccouenen.

8.2. Example Architecture Comparison Study
8.3. Conclusion

...

...

...

...

...

...

...

..

50
51
51
52
53

54
65
72
73
75

76
76
78
82
87
91
94
102

107
109
120

126
127
130
134
135
137
137
140
141
144
145
148

151
155
161

CHAPTER 1

Introduction

The challenge of building reliable and high spced special-purpose processing systems
quickly and at lower costs has motivated a scarch for faster and more flexible architectures.
Cenain application domains, such as those which apply digital signal processing (DSP) tech-
niques to sampled data, pose substantial real-time processing demands. These demands are
growing as DSP alorithms become more complicated and as developers wish to process data

at faster rates.

High speed processing capabilities are enhanced by the development of special purpose
processing resources which take advantage of VLSI or VHSIC technology to provide very
high speed operations. These resources can be found in the DSP realm: primitives perform
DSP tasks such as Fourier transforms, matrix operations, and application-specific operations,
such as adaptive beam forming. In the graphics processing realm, special purpose primitives
perform transformation, clipping, and perspective operations. The technology is extending
into other realms. Special purpose chips have been built to perform edit distance searches,
pattern matching and neural network emulation. The prototype development of these devices
indicates that there is likely to be a growing demand for high speed, dedicated processing
systems in application areas that were previously served by more traditional, slower architec-

tures.

Paralleling the desire for high speed processing is efficient system integration.
Resource-based systems are currently integrated into application processors in a few ways.
Special purpose configurations of high speed, special purpose primitives can be created by

hard wiring those primitives together and scheduling tasks statically. An example of this

-1-

approach is presented in {Cun2]. The integration produces a high speed processing net-
work, but cach application must be designed from scratch. Hybrid approaches are the most -
common to date. In these approaches, a general purpose processor serve as the controller
for a bank of special purpose resources, providing control and 1/O. The EMSP Data Flow
Computer [Brow84] follows this paradigm. Unfortunately, it is difficult to extend this
method to large collections of heterogeneous primitives which require different types of con-
trol and interfacing: a central control botdeneck will develop. The Alternative Low-level
Primitive Structures (ALPS) integration approach attempts to overcome this botteneck by
using a pool resource model in which tasks are dynamically mapped to available processing
primitives. The resulting architecture affords reliable, robust, and changeable implementa-
uons. From an ease-of-intcgration perspective, this approach affords an application indepen-
dence to the architecture. To create an application architecture, the application task directed
graph must be provided to individual primitive controllers and a suitable configuration com-
position must be decided upon. The first of these steps is a straightforward encoding. The

second can be decided upon via simulation and analysis of the application.

The essential model for d-ALPS [Bult86] describes application-driven configurations of
processing nodes. An ALPS application configurer is presented with an application algo-
rithm in the form of a directed task graph, with specified data arrival rates (fig. 1-1(2)). The
algorithm can be considered a set of processing tasks that are in a precedence and data-
sharing relationship. The ALPS approach dynamically maps that set of tasks onto a process-
ing configuration architccture which consists of a collection of special (or multi-) purpose
processing resources (fig. 1-1(b)). Central to integrating each individual processing element
is a homogencous interface control unit (ICU) which interfaces the primitive to a common

interconnection structurc: a sct of parallel data and message busses.

Source

Subtasks

Processing
Resources

Figures 1-1(a) and 1-1(b): A directed task graph and the
mapping of that task graph onto a collection of processors.

One realization of the ALPS architecture approach is the distributed-ALPS (d-ALPS)
arcaitecture. The dynamic assignment of tasks is performed not by a central controller but -
by distributed controllers, called interface control units (ICU’s), which share in scheduling
responsibilitics. Each clement of a d-ALPS configuration architecture contains an ICU-
primitive pair. The ICU has a description of the task graph, as well as information about the
capability of its attached primitive to perform certain tasks in that graph. The primitive per-
forms onc or many of the tasks in the task graph and the ICU provides intcr- and intra-node
task management functicns. Inter-node management functions include panticipating in a dis-
tributed and dynamic task assignment mechanism, managing queues of data blocks which are
cither waiting for resources or waiting on other data blocks to be produced, and handling all
monitoring, sctup, and status information cxchange. The intra-node functions include
orchestrating concurrent support facilities for memory management and data and message
transfer, and providing I/O and control to the attached processing primitive. The reader is
referred to the d-ALPS High Level Logical Control Specification in Appendix A for a more

complete description of the implementation of these control functions.

1.1. Thesis Scope

Designing and building ALPS architectures requires research and skills on both mun-
dane and fundamental levels. On a mundane level, a particular ALPS specification, such as
the d-ALPS specification, must be translated into replicated, physical implementations.
Along with this, interfaces between ICU's and each supportable primitive must be con-
structed. On more fundamental levels, research must proceed on many architectural chal-
lenges including: determining how to distribute tasks, managing queues of data, minimizing
communications complexity and overhead, and providing robust protocols that deliver perfor-
mance regardless of the application. This thesis is primarily concemed with one of these

research issues: task distribution.

Task distnbution and allocation is of central concem 10 the underlying approach for
ALPS. Task distribution refers to all methodologies that are necessary for mapping directed -
task graphs onto a sets of processing and communication resources. The minimal objectives
of rescarch into task distribution are to provide low cost, application independent mapping
mechanisms which do not deadlock. These have been realized in the distributed-ALPS (d-
ALPS) ICU specification. The overarching objectives arc to find mapping mecchanisms
which capitalize on genceral or specific task graph, architecture, and performance parameters
so that the underlying architecture can be tailored to specific applications by either utilizing
low cost, application-independent mechanisms or by utilizing application-specific mechan-
1sms that are implementeble in an ALPS support architecture.

Task distribution. or *‘scheduling,”” can be thought of as the analysis and manipulation
of paramecters which effect a particular execution order. These parameters can be classified
into four categories: rask definition parameters, architectural parameters, task mapping

parameters and performance parameters.

1.1.1. Task Definition Parameters

An application task graph imposes a precedence relationship among the subtasks that
compose it; that relationship is a parrial ordering of all subtasks, in that subtasks that are not
predecessors or successors of each other can conceivably be executed in an arbitrary order
(fig. 1-2). The task definition level, then, is rooted in the underlying application precedence
and provides the static ordering of some or all of the task graph. Any execution order

which can be derived from the panial order is valid.

1.1.2. Architecture Parameters

The underlying architecture imposes certain constraint and cost parameters for task

scheduling. As the configurer chooses the composition of a configuration, the chosen

intar-arrival
. - delay

\

Task Arrival

Task Arrival 2

Figure 1-2: Subtasks E and F have an execution order
independent of each other and of C and D. Tasks of
different arrivals have execution orders that are
independent of each other.

allocation places bounds on resource availability. This impacts task graphs which have peak
demands for resources that are greater than the allocated supply. Other parameters are less -
application-specific. For cxample, the architectural implementation may imposc static or
dynamic runtime costs which must be accounted for in a task schedule. Architecture param-
cters, then, include the composition-of the configuration allocation and the runtime task dis-

tribution and processing costs.

1.1.3. Task Mapping Parameters

The task mapping Icvel refers to the altemative mechanisms that can be employed to
choose an exccution order that is based on an incomplete task schedule definition. A com-
pletely specified task definition means that at the task definition level, the execution order
and resource assignment of all subtasks has been specified. If the task is not defined to this
level—the typical case--the mapping parameters can utilize random or heuristic-guided
assignment rules to dynamically assign the task graph. Task mapping parameters, then, are
the description parameters 1o a mechanism for choosing specific execution orders from an

incomplete static task definition.

1.1.4. Performance Parameters

A d-ALPS configurer is confronted with a mosaic of often conflicting performance cri-
teria. Some of these are explicit, and can be encoded in the application description. These
include task interarrival times, maximum latencies and maximum resource counts. Some
performance criteria are implicit and more difficult to quantify, such as correctness, stability,
reliability, recoverability, and reconfigurability. They may be expected by (or demanded of)
the configurer but their fulfillment does not necessarily hinge on particular configurations:
they arc architectural goals as well. Performance parameters delineate both the implicit and

explicit application criteria.

1.2. Thesis Goals and Organization

This thesis describes cfforts that have been motivated by the general objectives of
rescarch into task distribution in the context of an ALPS architecture. As a first stage of this
rescarch, this thesis provides a presentation and representation of the scheduling and alloca-
tion problem in terms of the above parameter classification and presents methodologies for
studying task scheduling and allocation. The overarching goal is to provide an investigation
framework which is uscful to both a designer/analyzer of an ALPS architecture (an architect)
and a configurcr, who will utilize an available underlying ALPS architecture to generate
specific application instantiations of that architecture. The results that have been derived
from initial use of these methodologies are of more than passing interest. Where appropriate

and relevant, those results will be presented.

The organization of this thesis is as follows. Chapter 2 introduces the basic categories
of allocation and schcduling methods— enumerative, graph theoretic, and heuristic— and
then presents some example scheduling methodology/system pairs. These examples demon-
strate how schedule generation and analysis is performed in the context of both simpler,
static architectures, such as processor pipelines and more general processor networks. The
goal of this chapter is to delineate the classification boundaries of the d-ALPS
scheduling/system pair.

Once the general background information is presented, an introduction to the specific
problems of scheduling in a d-ALPS cnvironment is given. This takes the form of an inves-
tigation of the four classes of parameters which describe the dimensions of the scheduling

problem in an ALPS-specific context.

Chapter 4, “‘Problem Sctup,”” introduces four analysis methodologies that will be
presented in subscquent chapters. Central to this introduction is a presentation of the basis

and objectives of cach methodology and a discussion of how each methodology can be used

by an architect and a configurer. The next four chapters discuss cach methodology in detail
and present examples.

Chapter 5 presents a set of mcthods for statically analyzing task parameters by them-
selves and in conjunction with some system and performance parameters. An architect can
model the impact of designed-in node limitations such as communications capability on
example applications. For a configurer, the techniques provide a delineation of minimal and

performance-optimal resource allocations; a feasible allocation typically lies between these

bounds.

Chapter 6 presents a mcthod for generating and evaluating task schedules on a
hypothetical architecture which can distribute and process tasks with no overhead. Given a
complete description of an application task graph and a composition of that simplified archi-
tecture, scheduling stares can be enumerated which demonstrate the various ways that tasks
can be scheduled in order to buffer instantancous demand for resources. The approach is
modeled after schedule analysis techniques for static, pipeline processors, introduced in
chapter 2. Its objective is to highlight the complexities of schedule and allocation analysis in
the d-ALPS context and justify the use of simulation-based analysis to both an architect and

a configurer’s

Schedule simulation, presented in chapter 7, allows an architect to investigate mapping
parameter altcmnatives in the context of a task graph and an architecture. It also allows
major architcctural assumptions which impact statically and dynamically on a schedule to be
modeled in. A configurer can make a first-pass estimate of the viability of a given
configuration: if this relatively inexpensive technique demonstrates that the task graph is exe-
cuted with unacceptable performance, it will not be necessary to submit the task
graptvallocation to more detailed architectral simulation. Given the specification for the d-

ALPS suppon architecture, the configurcr has no choice of mapping procedures that can be

-10 -

applied in a panicular configuration. At some point, though, the configurcr will be provided
with ALPS architcctures which contain mapping alternatives. The schedule simulator will -
be uscful as a first-pass analysis of those aliernatives to determine which are most appropri-

ate for the particular application.

Chapter § presents detailed architectural simulation as a means of gencrating and
cvaluating contiguration allocations for d-ALPS. Architectural simulators that model the d-
ALPS specification in Appendix A are key to evaluating the cfficiency and overhead of this
architecture. These simulators can provide a basis of comparison of this architecture to

altecmative ALPS architectures, as well as to other task processing architectural approaches.

The thesis conclusion, chapter 9, reviews how the overall goals of d-ALPS architecture
rescarch have been served by the development of analysis tools and methods. It summarizes

the objectives and achievements of each methodology and presents a framework for future

development.

CHAPTER 2

Background

In order to frame the scheduling problems inherent in the ALPS approach, two types of
background information arc necessary. First, allocation and scheduling methods which fall
into the general categories of enumerative, graph theoretic, and heuristic will be discussed.
An explanation and example of each of these types of analysis will be presented. Second,
scheduling and allocation techniques that are employed in a number of example systems will
be presented. These example systems fall under problem domains ranging from single-
purpose, static allocation to gencral purpose, dynamic allocation. The analysis techniques
and algorithms used (at run-time) to generate the operation schedule or allocation vary not
only with the amount of up-front information about the tasks, but with the costs that would

be involved in seeking and generating optimal scheduling solutions.

On the low-end, static pipelines arc presented. Static pipelines use a static, centralized
and predetermined control strategy which takes into account the enumeration of task arrivals
and collisions. This control strategy generates optimal schedules that can be implemented
efficiently. In this structure, queueing can be employed to maximize utilization of proces-
sors or allow an application-driven schedule. In this case virually all salient information
about the individual tasks is provided. An enumerative scheduling technique is employed.
This cxample of low-level, deterministic task scheduling is complemented by an example of
static resource allocation: register allocation to local variables, performed by optimizing com-
pilers. The salience of this example is that it presents é method for state generation and
altematives enumecration for resource assignment in much the same way that the pipeline

example provides mecthods for cnumerating task initiation altermatives. A graph-based

<11 -

representation is employved and a commonly used graph-theorctic algorithm is used to gen-
crate aflocation altematives.

Moving up one level of granulanty arc tasks that arc presented with information about
their requirements, but the system is not given a schedule of arrivals of these tasks. A dis-
tnibuted system for real-time task processing is presented. This system guarantees the
scheduling of tasks so that specified time deadlines are met. This system uses distributed
data about the load on individual processors to determine where 10 send tasks so that their
exccution will occur before a deadline is met. Morcover, the exccution of tasks that have
Just amved will not affect the previously made promises of de_adlines being met by tasks

introduced and scheduled carlier.
2.1. An Overview of Allocation and Scheduling Analysis Techniques

2.1.1. Graph Theoretic/Enumerative Models

Graph theoretic techniques provide a framework for the representation of task schedul-
ing and allocation problems and the generation of solutions. They transform these problems
into well-studicd b.ut computationally unattractive problems of graph partitioning, graph
coloring, longest path searches, etc. The advantage of these techniques is that the space-time
problems of allocation and scheduling can be visualized, and well understood combinatorical
techniques can be applied. The two disadvantages are that devising an acceptable represen-
tation that includes enough salient information about the tasks and the target architecture is
not casy, and that once a model is produced, it is usually unsolvable (or impractical to solve)
because of the exponential growth in the number of states to be evaluated. Enumerative
techniques rcly on graph representations as well as more standard representations (state
tables, Gantt charts, ctc.) and usc a variety of techniques to enumerate scheduling alterna-

tives. These representations can be made more precise in modeling important task and

-13.

system information by expanding the representation to include detailed, information as addi-

Jdonal states but after exhaustively cnumerating of all possible solutions, rely on computa- -

tionally expensive scarching and scoring functions.

An cxample graph theoretic approach for task allocation is the nctwork flow graph
modcl. Here, task initiation sites are represented as sources and task completion sites are
sinks [Ston77]. Each subtask in the task sct is represented by a node and the interconnection
of subtasks is represented by links weighied by the interprocess communication costs
between the two subtasks (fig. 2-1(a)). In additon, cach processor is assigned a graph node
and links are drawn to cach subtask. The weight of these links is determined by the cost of
exccuting the subtask on all of the other processors. For a system with N processors, the

contribution of subtask A, exccuting on processor x, to the link between x; and that subtask

=(N-DE (A x,)

is T , where E (A x) is the cost of exccuting subtask A on processor x, and the
contribution to the links between A, and all other processors X, 1S _(_N_—T)— Cuts

Figure 2-1(a): An example task set with interprocess
communication costs denoted by link widths.

<14 -

through this network must be made so that in cach region there is only one processor (fig.
2-1(b)). By minimizing the sum of links that arc broken by cuts, the minimum cost for task -
exccution can be found. The proof of this is as follows. There arc two types of costs taken
into considcration: E¢ x) and CO (i, x, j, y). the cost of thc communication between subtask
i resident on processor x and subtask ;j resident on processor y. The inter-process commun-
ication costs between co-locaied subtasks are assumed to be zero and these subtasks will be
in common regions in the cut graph. All other subtasks will be across a boundary from A,
and the IPC cost will be taken into considerauon. The execution cost E (A, .x;) will be contri-

buted by the sum of the broken links which define the apportioning of the graph; this is why

Figure 2-1(b): A task set/processor network. The
cuts represent assignment of subtasks to processors.

the execution cost weights are opposite-sign.

A significant obstacle in this approach is the nced to make substantal simplifying
assumptions in order to coerce both a sct of tasks and an operating environment into this
representation. In this example precedence constraints and concurrencies are not explicitly
accounted for. In addition, the model would have to be significandy augmented to represent
the subtask timing. An example of a system simplification that is made is that interprocess
communicaton is simply assigned a cost and that cost is assumed to be independent of the

nature of the communication: whether it is a single transfer or & scries of communications.

2.1.2. Heuristic Models

Heuristic techniques are those which apply general servicing, partitioning, or delaying
rules to specific problems. Their use is motivated by the observation that optimal solutions
are difficult to derive and are often impractical in real systems, especially when runtime vari-
ables such as memory and communicatons contention must be included and timing estimates
become degraded. Heuristic algorithms have met with varying success. The distinguishing
features in heuristic approaches are their complexity, or number of factors they take into
account, and the performance improvement they offer over a large set of tasks; scheduling
and allocation performance improvement can be measured as a ratio of the performance of a
schedule derived via heuristics to the performance of an ‘“‘optimal’’ schedule, using as a
measure of performance some combination of the critcria the heuristic biases towards (task

completion, utilization, etc.) and the costs incurred by the heuristic-generated schedule.

A hcuristic approach for task allocation in systems with time-critical tasks has been
proposed by Ma [Ma84]. His approach secks to balance processor utilizaton, minimize
interprocess communicaton by colocating tasks that share information, and mect the time-

critical task requircments. Each full execution of the task is called a processing thread and

.16 -

it is the port to port (PTP) cxccution tume (start to end of thread) which is specified to the
svstem, The contnbuting factors to the PTP time arc the task execcution time, the queucing -
delay time (QDT) due to multiprogramming of the processors, and the interprocess commun-
ication (/C) The optimizaton function that results is simply a minimization of the contri-
buting cost factors. A task preference matrix denotes the exclusion of certain subtasks from
particular processors: a task cexclusive matrix prevents large-instructioned or frequently
cnabled tasks from being co-located to reduce QDT. A coupling factor matrix biases
towards co-locating tasks with large /PC. A task redundancy matrix allows for multiple
copics of a task for re-allocation or low-cost re-invocation after faults. These problem
definition matrices are fed 10 a task allocation mode! ~vhich is a branch and bound tree
scarch based algorithm. An optimum <olulion is generally not feasible, as Ma asserts it is an
NP hard problem, but the con-traint matrices defined above limit the breadth of the search;
in a static implementation, the up-front, one-time cost of finding this solution would be
acceptable if the schedule could then be hard-coded in the system. For problem analysis
on-the-fly, Ma proposes that this allocation algorithm be performed by preprocessors,
resources especially dedicated to scheduling. The first preprocessor generates the constraint

matrices and the second performs the search.

The heuristic Ma employs seems to ignore current resource state information which
could dramatically affect the performance of implemented of allocation decisions. If this
information is o somchow be included in the schedule generation heuristics, Ma does not
indicate its rolec or how such information is gathered. It is conceivable that previous alloca-
tion dccisions could be saved to approximately model the state of the system but this would
limit the algorithm to a single task server; the algorithm would require distributed informa-

tion gathenng and analysis mechanisms to be implemented at each task initiation site.

- 17 -

2.2, Pipelines

A straightforward example of the application of cnumerative scheduling techniques is
cmiployed 1n the scheduling of processor pipelines. A task is described as a sequence of
visits to independent processing stages. (fig. 2-2). The task is broken into independent units
of approximately cqual execution time. At cach stage some set of operations is performed
and the next stage is invoked. In a lincar pipeline, each stage is passes results to an adjacent
stage: in 2 more general case, results could be passed to a number of stages and can be fed
hack to carlier stages as well. An assumption is made that each stage in the pipeline
requires a standard unit execution time; longer stages can be broken into virtual stages, each
requiring a unit execution time. In the bascline case, data is injected into the pipeline and
when it exits the pipeline, new data can be presented to the system. The goal of pipelining,
though. ix to send data (initiate tasks) as often as possible by using earlier portions of the
pipeline for new tasks while older tasks are being processed by later stages. To this end, a
schedule must be conceived which allows data to transit to cach processor with no danger of

cothding with data from previous (or subsequent) armivais.

Processor

Buffer

Input

P1

Figure 2-2: A linear pipeline.

- 18 -

For lincar pipelines (fig. 2-2), scheduling presents litle difficulty, provided the stages
take cqually long to execute: a new task can be presented 1o stage 1 as soon as that stage is -
finished with its current task and has passcd it to stage 2. From an implementation point of
view, this mcans that data is passed one stage at cach (system) clock tick. For nonserial
pipelines, and most evidently, for those in which physical pipeline stages are reused (recircu-

lating pipelines), the scheduling is more complicated (fig. 2-3).

The job sequencing problem in pipeline scheduling, then, is to schedule tasks awaiting
initiation in order to avoid collisions and to achieve a high throughput. The throughput of a
pipeline system is the rate at which data is presented to the system, the implication being

that data leaves the svstem at the same rate. It can be expressed as:

TII=—~—”-——,
kt+(n - Dt

where & is the number of stages of the pipeline, 1 is the clock period of the pipeline, i.e. the

basic time required for cach processing element to cxecute (data movement time is included

Processor

tnput

—- -
Multi-
plexor

] Output

ST

P3

Figure 2-3: A recirculating pipeline in which
results from stage 1 is fed forward and results
from stages 2 and 3 are fed backwards.

.19 .

in this measure), and n is thc number of tasks being processed during the period
kt+ (n - Dt; when the pipeline is full, the throughput is simply % Two performance cri-
teria, latency and throughput, play a role in determining how to formulate a schedule.

A representation of a pipeline scheduling problem is provided by a reservation table
{table 2-1). In this spacc-time view, processing clement Py is required to execute at
timesteps (0, 3 and 6 for cach task initiation. In the language of pipeline processors, the
lateney of a pipeline is the number of time units between two initiations.! For static, linear
pipelines, the latency can be one time unit. For nonlinear pipelines, where processing units
arc re-used, or for pipelines with varving exccution times, the latency may be a constant (1
or larger for static, single-functioned pipelines) or it may be a sequence. That is, the latency
can vary between successive initiations (task arrivals) to most cfficiendy map pending tasks
onto processors while avoiding collisions. A contro} strategy is a procedure to choosc a
latency scquence that cyveles. The criteria in choosing a latency cycle is to choose one which
maximizes throughput and avoids collisions. This is done optimally by choosing one which
has the minimum average latency (the average of the inter-arrival times of the task initiations

in one latency cycle). A nonoptimal strategy is to choose a cycle which minimizes the

Reservation Table
to Loy e Lty | ta | ts | 16 | 19
P, | X X
P, X X
P, X X | X

Table 2-1: An example reservation table for the pipeline in figure 2-3.

! In the language of the network world, this is the interarrival time.

latency between the most previous ammival and the current arrival; this is intuitively
cquivalent 1o a greedy strategy in memory allocation in which at each step a locally optimal -

or beneficial decision is made, regardless of the downstream consequences.

A procedure for finding and enumerating latency cycles and detecting disallowed cycles
s presented in [Hwan&4]. A row on the reservation table represents the allocation of a task
on a physical processor. For cach row of the reservation table, the distance between marked
(treserved times) represents a possible collision. Multiple entries on the same row indicates
that the task reuses that physical resource (processing element) and once the task has been
initated it will require that resource at the tme stages indicated on the reservation table. A
collision will result if a subscquent task is initiated so that it requires the resource at one of
the times that the current task requires the resource. If the spacing between two reservations
on a row of the reservation table is s then a collision will result if two tasks are initiated
with a latency of s; those two tasks to not have to be adjacent amrivals to collide. The
method usced to determine latency cycies is to create a vector (the collision vector) which
indicates the feasible latencies that may be chosen:

C=(Ch,....CoCy)

where C, = 1 if there is a reservation table row distance of i. The initial collision vector
then corresponds to the state of the system where the first arrival has been presented, and
subsequent arrival are limited to the zeros in the collision vector. The collision vector is
then shifted 1o the right, a zero shifted into the left-hand-side, until the rightmost zero is
shifted out (a zero shifted out indicates that an amival is allowed at that time, i.e. if at the
third shift, a zero was shifted out, then a latency of three would be allowed—there would be
no collisions. The ncw collision vector (the old one shifted until the first zero) is bit-wise
ORed with the previous vector to represent subsequent collisions that are possible between

the next task and the previous tasks. The new collision vector represents a new state in the

svstem; a state transition diagram cnumerating cach collision vector linked with an arrow
indicating the latencies between two amvals which bring the system to that state is then -
drawn (fig. 2-4). From cach collision vector all subscquent vectors (states) new ones can be
derived and these states can be linked into the transition diagram. Eventually a trail of states
will connect to a previous state or with itself. A cycle in this statec diagram indicates a con-
trol strategy, a latency schedule that will not induce collisions among different tasks. The
transitions. labelled with the latency required to move between states, indicate this schedule.
The optimal schedule (emboldened in fig. 2-4) is the cycle which has the minimum average
latency, that is. the sum of the latencics at each transition divided by the number of stages in
the cycle. Since any closed path is a feasible schedule, a state can be visited any number of
times. A simple schedule is one in which cach state is visited only once: since there can be

many optimal schedules. it may be advantageous from a control implementation point-of-

m
1]

{1.2.3.6}
11100100

(9]
"

11100100

11110110

1
11110111

Figure 2-4: A collision vector state diagram; the
arrows indicate the control strategy with the
minimum average latency.

[F]
(£

view to choose simple schedules over complex ones.

The above mcthod is a straightforward state enumerative technique which allows not
only the production of collision-frec arrival schedules, but allows a maximum throughtput
schedule to be gencrated. 1t is applicable to static pipelines which are nonlinear. An exten-
sion to this method can be applied to multifunction pipelines, pipelines which can operate on
different functions by interconnecting different subsets of stages for ecah function in the
pipeline. The scheduling problems of a pipeline processor which can perform many func-
tions (exccute p different tasks) can be represented by p overlaid reservation tables. A
static, multifunction pipeline is designed to perform a single-type task for a while and then
perform a task of a different type after a minimum waiting period. An optimal latency
schedule for each of the task types is determined and a control structure determines the wait
time necessary between two different typed tasks. Each task to be executed is tagged with
the particular function that is required to distinguish it from arrivals of the same task-type
and amivals of different task types. The extension to the single-function algorithm is that an
arnval can collide with a task of the same type or a different type. Collision vectors which
describe the collisions possible between any two tasks can be generated from the overlaid
reservation tables: there are p? collision vectors each with length n for a system of n stages
1o execute p differcnt tasks. The process of gencrating individual latency cycles is similar to

the static-pipeline method and is described in detail in {[Hwan84].

The significance of this extension is that there is an automated method of generating
schedules for the mapping of multiple tasks onto fixed hardware pipelines which implement
the specific functions by transferring data across dedicated interconnections. The subtask
times are completely specificd: in fact, the processors operate at ratios of a basic pipeline
cycle time. Al communication, whether between adjacent pipeline stages or spanning multi-

ple or parallel elements, requires dedicated resources and equal time per transfer. Finally,

to
(]
L]

the control structure is static and centralized. Once tasks are introduced 1o the system, their

travails are predetermined. The above control strategy determines an optimal latency struc- -

ture of tasks of different types so that throughput of cach task type is maximized.

An example of a staug, reconfigurable pipeline is the TI-Advanced Scientific Computer
(ASC). This pipelined anthmetic processor allows instructions which require different stages
10 take different data paths through the pipe. The control for this processor is contained in a
ROM accessable by execution logic and provides the route through the pipe for each instruc-
tion type. The base address for this information is provided by instruction decode logic.
When several instructions of the same type are present, for example when a vector operation
is specified, the instructions can be pipelined through the hardware. The latency cycle for
these streams is specified in ROM. When instructions can be overlapped, average speed

increases from 0.5-1.5 MFlops to 3-10 MFlops.

2.2.1. Reservation Table Optimization Through Delay Insertion

For single functioned pipelines, the optimal latency cycle is optimal with respect to the
given reservation table. As an improvement in throughput, delay elements, or buffers, can
be inserted in each stage. This has the effect of modifying the reservation table to allow
tasks to interact with less collisions. The maximum achievabie throughtput is attained when
all elements of the pipeline (all processors) are fully utilized. The method of modifying the
table as described by [Davi78] is a bit involved but scems to work. First, a set G¢ is gen-
erated from the chosen (optimal with no inserted delays) latency cycle C, consisting of the
inter-arrival differences, i.e. the time between any two (not necessarily consecutive) initia-
tions. Second, a sct G- mod p is computed by modding each element of G¢ with the period
of the cycle C and removing duplicate members. Finally, the reservation table can be

modificd by inscrting delays to climinate inter-row distances which are members of the set

y

Go mod p. A maximum utilization latency cycle can be generated by choosing a constant
latency ¢vele cqual to the maximum number of entries in any row of the reservation table. -
The reservation table is then moditied by adding delays to make that cycle allowable. Alter-
natively, some application-specific cycle (a pre-determined schedule unrelated to the collision
problems in the pipeline) can be implemented, i.e. made allowable, by adding delays to
remove any conflicts between the forbidden latencies in the reservation table and the inter-
arnival times in the speciticd cyvele. 1t should be noted that adding delays contributes directly
10 the task end-1o-end ume/throughput tradeoff: while processor utilization and throughput

are maximized, the end-t0-end task time is increased via queueing.

2.2.2. Extension to Reconfigurable, Dynamic Pipelines

In a static pipeline, all initiations are subject to the constraints listed in a single reser-
vation table or one that is comprised of overlaid reservation tables, one for each function the
pipeline can support. Transitions between initiations of different types are costly: the pipe
may have to empty before a task of a different type can be initiated. In a dynamic pipeline,
initiations of different typed tasks can occur simultancously, and complex scheduling stra-
tegies allow multiple numbers of initiations of different functions in the same pipeline. A
more complicated model of pipelines (one with bypass structures to enable certain tasks to
jump over unused stages as well as interconnection control, routing and qucue management
functions) would have to be incorporated to implement optimally scheduled, reconfigurable

pipelines.

2.3. Graph Coloring and Application to Resource Allocation

A technique for defining resource contention and minimal allocation is utilized in
optimizing compilers to allocate high-spced registers to program variables. The essential

problem 1s laid out as follows. A subroutine has a number of local variables each having a

-25.

lifetime detined as the time at which the first write is performed on that variable to the time
when the last read is performed on the vanable. There may be variables present which are -
accessed frequently and others which are defined but not accesed at all. Given a processor
with a number of high speed local registers, it is desirable to make efficient use of these
registers by allocating as many of these registers to local variables as possible while allow-
ing the allocation of a register to one variable to not interfere with the later allocation of the
same register to a new vanable. That is, if a variable is first written to at instruction A and
is last accessed at instruction A + & then a new variable which is first written to at an

instruction later than A + & can be assigned to the same local, high speed register. A table

instructions

_)LA_AA/\AA$
d e f§f g

a b c variables

Figure 2-5: A lifetime table for variables a through g. The
y-axis represents subroutine progress along an instruction stream.

can be constructed which is not unlike the reservation table for pipeline processors, charting

the lifetime of cach local variable (fig. 2-5). Given a fixed number of high speed registers -

and an ample amount of stack storage for the remaining vanables, the goal then is to deter-
minc how few storage locations arc required 10 provide a noninterfering memory allocation:
the more cefficient the memory allocation, the more variables can be mapped to high speed

registers,

A ¢raph represeniation is chosen to model the local variable timing relationships. A
graph is a collection of cdges and vertices; a unique vertex will be used to represent each
local variable, and edges will be used to indicate the timing relationship among the local
variabics. First, a vertex is drawn for each local vaniable. Second, observing from the local
variable lifetime table an edge is drawn connecting vertices representing variables which
have overlar 4~ ufetimes. That is, if a local vanable foo is bom (is first written to) at
instruction A and dies (is last read from) at instruction A + 8, it is connected to any variable

bcr which is bomn before instruction A + 8 and dics after instruction A (fig. 2-6). The final

Figure 2-6: An edge-vertice lifetime relationship between
variables. Connected vertices indicate overlapping lifetimes.

.27 -

step in this approach relics on the concept of graph coloring to determine the minimal allo-

cation of memory arcas to yicld a noninterfering mapping to local variables.

At this stage, the concept of graph coloring is used to determine minimum allocation.
The graph coloring problem, simply stated, is 1o find the minimal number of colors required
to color the vertices of @ graph so that no two adjacent vertices have the same color (fig. 2-
7). The graphs arc limited to simple graphs, i.c. there can be no cdge between vertex foo
and itsell. because no coloring scheme is possible and it is not necessary to represent the
fact that the lifetime of vanable foo spans itself. There are a number of proofs and algo-
rithms related o graph coloring; an introduction can be found in {Mott83]. An algorithm by
Welsh and Powell is presented to color a graph. Heuristics to find the minimum coloring
are (1) to note that tnangles always require three colors, and (2) that the degree of a particu-
lar vertex is 4 then at most d colors are required to color the vertices adjacent to that vertex.
Assuming that the number of local variables is relatively small, a plausible coloring can be

found: if it is not minimum, the allocation approach will not be optimal but will still work.

Figure 2-7: A coloring of the variable graph.
Variables with similar colors (shading) can
be assigned to the same register.

After the graph is colored, the number of colors represents the required memory loca-

tions to ensure isolation of variables.® If that number is less or cqual to the number of local -

registers, then all variables can be placed in local registers provided that the allocation is
controlled by the knowledge of when that register is used for which variable. If that number
is greater than the number of local registers, then a subset of the color-groups can be
mapped onto local registers. As a further optimizaton, local variable groups which have
higher expected access rate could be mapped to high speed registers. Alternatively, the
coloring algorithm may bias grouping according to access rate so that highly accessed but
independent local variables are placed in Lhc same group; that group could then be mapped

10 a high-speed register.

The register allocation problem introduces a graph representation for demand (vertices),
interrelatonship of demand (edges) and supply (colors). The difficulty in establishing a
minimal allocation can now be seen as directly related to the complexity issues of a well
known graph problem. From a process-scheduling point of view, the register allocation
problem is akin to the problem of statically assigning tasks to (homogeneous) processors so
that the minimal number of processors is used. While an optimal (minimal) allocation can
be found, the assignment method can not be extended to periodically initiated tasks unless

the representation was changed and the underlying graph coloring problem redefined.

2.4. Bid-based Task Scheduling

A fundamentally different approach to task scheduling and sequencing is based on two
underlying assumptions. First, task arrivals are not known in advance: the system is a gen-
eral purposc task processor in which requests for processing are made at random times. A

task is characterized, then by its start time, computation time, deadline (when it is required

2 Unfortunately, it 1s difficult to prove that a given coloring scheme for a graph is the minimal one.

A

229 .

to complete), and possible its reinitiaton time. In addition, it may have cnumerated resource
requirements and intemal precedence constraints, When the task is created and compiled, -
the precedence and compute lime can be encoded; when the task is invoked or requested, the
deadline and possibly the task’s periodicity (reinitiation time) can be specified. From the
individual processing node's point of view, tasks may arnive at the node by some process
invocation service which initiates tasks which are scheduled periodically. Alternatively tasks

nay arrive as a result of being shipped to the node by some other node.

2.4.1. Structure of the Schedulers

Each node in the system has a scheduler that is identical to schedulers on other nodes
(except for some node-specific information, such as processing capability). When a task
arrives the node attempts to schedule it locally, i.e. it checks to see if it has enough surplus
processing lime—processing capacity above the time alloted to jobs already guaranteed—to
exccute the task task so that the task’s deadline is met. If it is able to meet the deadline then
the task is scheduled locally and is considered to be guaranteed to meet its deadline. If the
local node can not meet the task’s deadline then requests are made to other processors to
accept and guarantee the deadline of the task. Tasks that are accepted and guaranteed
locally are fed to a dispatcher service. The dispatcher monitors the run queue of the local
proccssor and invokes the task with the earlicst deadline. Tasks that can not be accepted
and guaranteed locally are given to a bidding service which queues up tasks that must be
farmed out. Though these tasks may eventually miss their deadlines, the tasks that have

already been guarantced will not run late due to the arrival ol new tasks.

The heart of the distributed scheduling process is the node interaction which permits a
node which has tasks that nced to be scheduled but has no excess capacity from which to

draw. The scheduler on the node with tasks to farm out broadcasts a request for task servic-

ing, reccives bids for that task by nodes which have excess capacity and makes a decision
on where to send that node based upon the bids received. The request for bids includes the
task's computation ume, deadline, size (for estimating communication and memory alloca-
tion costs), the ume at which the bid request is being scrﬁ. and the deadline for bid requests.
This deadline is set so that nodes which are processing a number of bid requests can decide
whether to process this request: factors in this decision include time for nodes to process the
bid. time for the requester to evaluate these bids, and time remaining for the task to be sent,
scheduled and executed. Some of these factors are estimated bid processing times, which
include communications costs which are factors of the load on the network: the point here is
that this deadline is composcd of estimates. The nodes that receive bid requests must decide
whether they can accept the task and guarantec that it will meet its deadline. This decision
rests upon several factors: the load on the node, the estimated computation cost of the bid-
for task. and the estimated time at which the task will amive. Once a decision is made it is
rcturned to the bid requester for bid processing. The requester receives a list of bids from
vanous serving nodes which give an estimalte of their ability to process the task. This est-
mate is the surplus compute time at the node between the expected arrival time of the task
and 1ts deadline. The bid requester then chooses among the bidders based on these surplus

estimates.

Onc extension to the bidding scheme is to attempt to guarantee tasks that have pre-
cedence constraints. Suppose three tasks A, B, and C have the precedence relation
A <B <C (A precedes B which precedes C), and A and B have been guaranteed on two
different nodes, 1 and 2. The site at which C arrives, 3, attempts to guarantee it. This is
donc by assuming a start time of the task of Dg, the (already guaranteed) deadline of B. If
C can not be guaranteed locally at node 3, the node will send out requests for bids for C but

will ask bidders 10 retum the bids to the node which owns and has guarantced 8, node 2.

L.

Node 3 will then ship € to node 2, presenting it with the task of resolving bids for C. Node
2 will attempt to guarantee € locally; if it can not. it will attempt to modify the deadline it
has imposed on 8 so that the start time of C will be pushed carlier. If Dg can be reduced
so that 8 is still guaranteed and € can now be guaranteed Jocally, € is scheduled locally. If
C can not be guarantced locally even after modifying 8, node 2 waits on incoming bids for
C and chooses the best bidder. When that bidder is informed that it is to receive and

cuarantee task C it is also given the new start time of C.

2.5, Conclusions

The above example svstems demonstrate the use of graph theoretic, enumerative, and
heuristic approaches in modeling allocation and scheduling problems. Heuristic approaches
are more popular in dvnamic scheduling applications where information about tasks and task
arnvals is limited. informaton about the state of the system must be estimated, and the time
to make the scheduling decisions bears directly on the processing load on the system.
Enumerative and graph theorctic techniques are popular when system interconnections and
task schedules are known (or are to be determined statically). The time to generate
schedules or allocations grows dramatically with the size of the problem, and optimal
schedules may degrade or, in fact be forbidden, if the system or task description does not
match that with which the schedule was generated; these techniques are less popular with
dvnamically scheduled systecms. The analysis methodologies presented in this thesis will
make use of scheduling techniques similar to control strategy generation for pipeline proces-
sors and will consider allocation decisions similar to those scen in the graph theoretic-based
register allocation example. The heuristic-based task assignment system reviewed in this
chapter is a uscful introduction to the hecunstic-based task servicing disciplines that will be

prescnted in chapter 7.

CHAPTER 3

Problem Specification

Scheduling and processor allocation can be considered most generally as the mapping
of a sct of tasks onto a system of processors. The central scheduling and allocation prob-
lem. regardless of the particular implementation of an ALPS architecture, is the efficient and
cflective distribution of an application specific sct of tasks onto a pool of resources.
Scheduling acts on an application task graph that has been described by rask definition
parameters. The tlask graph is mapped onto a processing environment, characterized by
architectural paramerers which include the composition of resources and the specification of
the underlving support architecture. The mapping is facilitated by mapping parameters
which, while conserving the basic task definition, generate cxecution orders and assignments

.:ndcr the guidance of task servicing heunistics. The goal of this mappine is to facilitate the
execution of a task graph with some defined level of performance. The performance criteria
can be described by performance parameters. The above process is illustrated in figure 3-1.
Scheduling and allocation issues, as applied to ALPS, is a problem of operating within broad
boundaries imposed by the application task to find a combination of task definition, architec-
tural, and mapping parameters which yield an execution order which satisfies performance
critena.

The goal of this chapter is to transform the discussion of the gencral problems of
scheduling and allocation into a discussion of the mechanisms and parameters behind
scheduling and allocation in ALPS. Once the reader is equipped with this background, sub-
scquent chapters will present methodologics for investigating scheduling via manipulating

these parameters. This chapter will first prescnt two perspectives on the investigation of

task graph
detailing parameters

(task detinition)
parameters

Application
task definition

en—

¥ performance P
criteria parameters
4 A

architectural
k parameters

Figure 3-1: The ALPS configuration is composed of
task definition, architectural and task mapping
parameters. The choice of these parameters is

guided by performance criteria.

these parameters: the configurer’s and the architect’s. Following will be a discussion of per-
formance parameters which highlight the contrasting objectives of the architect and
configurer. The task dcfinition, architectural and mapping parameters will be presented in
subsequent sections. The architect and configurer have different motivations in investigating

these parameters; these motivations will be discussed in each section.

M.

3.1. Parameter Investigation Perspectives

Performance, as broadly defined, encompasses straightforward, specific demands on the
application architecture designated to fill a particular application. These demands can
include requirements on latency (how long it takes for tasks to complete), throughput (the
rate at which tasks must be processed), and system size (how many resources can be alloted
to the application because of size or power constraints). Given an underlying support ALPS
architecture such as the d-ALPS architecre, a *‘configurer’” should be able to either dcter-
nunc a contiguration architecture that meets these explicit performance criter’a or determine
that the requirements are too imposing for any d-ALPS configuration. From this perspective,
the configurer would investigate the task definition, system and mapping parameters that can
be manipulated by the configurer. The configurer can not change the underlying architecture,
but can constructively modify the task definition, can vary some parameters of the
configuration architecture, such as resource pool composition, and may be able to choose
from a limited number of ways in which the task mapping is effected. A constrained inves-
rization of the parameters which affect scheduling and allocation is desired by a configurer
so that the configurer can cither decide on a configuration that meets explicit performance

criteria or can decide that such a configuration is not possible.

The ‘‘architect’” desires to investigate the underlying scheduling and allocation prob-
lems as they are addresscd by a range of architectural approaches. That is, the architect will
not presume that the only manipulable parameters arc those imposed by single ALPS archi-
tecture such as the d-ALPS architecture. Furthermore, the architect is interested not only in
application-specific explicit performance criteria, but general performance expectations of the
ALPS architectural approach. These expectations can be broadly labeled implicit perfor-
mancc paramcters, and may include cfficiency (how many resources are required over some

idcal, minimal allocation), fault tolcrance (how the architecture responds to component

faitures), and stability (how the architecture responds to slight deviauons in presupposed tim-

ings and requirements). The architect’s perspective should be supported by an uncon- -

strained investigation ot the parameters of a particular architecture in addition to an investi-

gation of altematives that may not be encoded in a particular architecture.

3.2. System Performance Specification

There are two views of system performance when examining scheduling and allocation
issucs. The first view is that the goals of scheduling and allocation are to create a system
which carrectly exccutes the tasks within the bounds of a given sct of performance criteria.
From this view, the performance criteria are specified in advance and allocation and control
alternatives arce tried until a system which meets the criteria is found. This can be thought
of as the configurer's view. The sccond view is that regardless of the static performance
criteria (which in this view can be regarded as pan of the algorithm specification), there are
meta-performance expectations that transcend any panticular application. The goals of
scheduling and allocation then are to find approaches that have generally beneficial results
and can be applied across an application domain. This is the architect’s view. The above
distinctions are made because depending upon one’s view of the scheduling and allocation
problem, the relative value and even the definition of individual performance measures will
vary. Each performance criteria discussed below presents challenges to both the architect
and the configurer. The way in which each performance criterion motivates investigation of

the task definition, architecture and mapping parameters will be presented.

3.2.1. Latency

Latency is a measure of the end-to-end processing time of tasks. It is the time that a

frame of data cntered the network at a source subtracted from the time the resulting data

——

block reaches a network data sink.! There may be more than onc latency measure if there
are multiple sources and sinks, especially if the task has disjoint pans (fig. 3-2). From the -
conligurer’'s view, the latency may be a critical parameter to the original application; an
allocation/schedule must be found that meets this criterion. From the architect’s point of
view, latency has avoidable and unavoidable components. There is @ minimal latency that
can be found by summing the computation and communicatons costs along the longest path
in 1 task graph and adding the overhead time for associated transactions. Above this value,
luteney results from intra- and inter-task contention for resources. The architect investigates
efficient dispatching mechanisims which impact configurations characterized by both lightly
and heavilv resource contention. This would involve, as a first step, analysis and design of
the components of the underlving ALPS architectural implementation which cause transac-
tion overhead. In additon, the architect wishes to find ways of causing latency to increase

smoothly or predictably with this contention: this is most likcly afforded by investigation of

O

Figure 3-2: A task graph composed of two disjoint parts.

! This is a network definiuon of latency, and also one which is commonly accepted; it is not to be con-

fused with the definiuon of latency used wn the pipeline world, which is what the network world calls the inter-
armival ume.

.7
mapping parameters,

3.2.2. Throughput

The inter-amival time of data (initiation schedule), which is likcly to be part of the task
Jetinition, implicidy determines the system throughput, in that the entry rate of tasks should,
in the long run, cqual the task cxit rate. In the idcal casc, tasks will crier the system at
some proscribed rate, and afier the **pipe’” is filled up, i.c. after the first task is fully pro-
cessed, tasks will exit the svstem at the exact rate that they entered. Complicating this ideal
case is that task latency may not be constant when contention is present, and the first task

latency may be lower, due to less contention. than that of subsequent tasks.

From a configurer’s point of view, throughput can typically be categorized as a
specification parameter instead of a performance measurc, though a configurer may be
interested in measuring the additional capacity that a particular allocation can handle. This
measure will give the configurer some indication of the robustness of the system to tem-
porary interruptions in processing. From an architect’s point of view, a gencral scheduling
coal is to accomodate a significant amount of inter-task contention; a scheduling method can
be tested by specifying a task and then seeing how a system which incorporates this method

responds to larger throughput demands.

3.2.3. Allocation

The categorizing of allocation as a performance measure as well as a system parameter
requires a review of the coupling between allocation and scheduling problems. Two related
couplings can be posed:

e Given a task sct, a minimum latency, a maximum throughput and a scheduling

methodology. find a minimal allocation that will accomodate these criteria.

o Given a task set, a minimum latency and 4 maximum throughput, and an allocation,
find a scheduling methodology which allows the allocation to accomodate the require- -

ments.

Though a configurer supplics an allocation via architectural parameters, the allocation can be
viewed as a performance crtenia in that the configurer tries o find the most cfficient alloca-
tion or onc which accomodates high utilizarion of resources. The architect views allocation
as a performance metric in that allocation it can be the basis of comparison for different

scheduling methodologies operating under the same task requirements.

3.2.4. Reliability

In general, any ALPS-based architectural configuration should be resilient to single
point failures in that performance degradation (along many criteria dimensions) should be
measurable and containable with system degradation. The central advantage of scheduling
mechanisms that adhere to a dynamic assignment approach is that at the time of binding a
processor, any number of system faults may have occurred, but as long as there are

sufficient resources, the task execution will proceed.?

From the configurer’s point of view, reliability is a requirement on the relationship
between a fault in the allocation or scheduling (processor deaths or task deaths/delays) and
the degradation of a performance criteria. Reliability, then, can be codified in terms of the
impact of a particular fault or eventuality on an explicit performance criteria. An example of
this relationship that a configurer could impose is as follows: *‘If one FFT processor dies,
the system should be able to produce results at the same rate and the latency can increase by
no more than 10%.’" The difficulty in deciding upon these relationships and finding an appli-

cation architecture that meets them can not be understated.

2 The system may crash under a vanicty of circumstances, some tied 1o the aggregate demand for resources
and some tied to the peculiarities of demand synchroruzation.

The architect is concemed with finding scheduling approaches which reduce drastic
repurcussions due to site cventualities. Consider an architecture which has N processors and -
requires N —1 of those processors to marginally process a given task. Reducing site eventual-
itics means ensuring that the system works with a failure of onc processor, regardless of the
particular processor that failed. Investigation of these concems requires a study of the
architectural mechanisms that implement a scheduling method, as well as an investigation of

those methods.

Each of the above performance critcria impacts the investigation of task definition,
architecture and task mapping paramcters. Task latency criteria are met by the configurer by
static analysis of the task definition parameters and the allocated architecture. The architect
studies the details of an architectural specification through architectural simulation to deter-
mine how to systematicallv rcduce latency. Testing for throughput requirements by the
configurer is facilitated by architecural simulation; the architect considers task mapping
mecthods—via schedule simulation—which cnsure an orderly execution of task arrivals.
Allocation is the key architectural parameter to a d-ALPS configuration. The configurer
chooses an allocation which allows a system to meet other performance critcria and which
affords a high resource utilization. The architect compares necessary allocations for given
tasks in one ALPS architecture with other architecture classes or other ALPS architectures to
determine the processing efficiency of the ALPS architecture. Reliability and other implicit
performance criteria are directly impacted by architectural and task mapping parameters.
The architect and the contigurer use architecwral simulation to study the effects of site even-
tualities. Following is a description of the task definition, architecture and task mapping
parameters. The descriptions include an indication of which parameters are interesting to an

architect and a configuerer.

.40 -

3.3, Task Definition Parameters

The task definition parameter group describes an application task graph. This section
provides a detailed description of the components of that graph and the ways in which the

task definition can be altered to affect the eventual execution order.

3.3.1. Directed Graph Notation

The specification of a task in the ALPS framework makes use of directed graphs.
Each node in the graph represents an independent subtask which requires a single processing
node o execute. These subtasks typically represent computationally intensive processes.
Subtasks are connected via directed links which not only specify a precedence relationship
among tasks but a communication of data as well. A subtask is initiated once the assigned
processor has received all of the data for the task; implicit in receiving this data is a signal
to exccute.® The representation is similar in structure to data flow representation but slightly
different in interpretation. Nodes in data flow graphs represent processing stages: their exe-
cution is initiated by the receipt of data, whose flow is implied by links between nodes in
the data flow graph. The data flow world uses directed graphs to represent the flow of data
and control, commonly referred to as ‘‘activity,”’ to different processing resources. Directed
task graphs in the ALPS domain represent the dependence of tasks and a corresponding pas-
sage of data. Control flow in the corresponding particular ALPS underlying architecture is

not implied in these graphs.

We will assume that the configurer can not change the fundamental breakdown of tasks
into subtasks. That is, the functional decomposition of the application task into separately
computable primitive operations can not be altered. This assumption is not made because it

is unforseen that the configurer will make a contribution to this decomposition. It is made

3 A data block that is sent to more than one subtask initiates multiple subtasks.

- 41 -

because the scope of this thesis is to consider how functionally and topologically unalterable

task graphs are mapped onto a described architecture.

3.3.2. Graph Weights

Dirccted links represent communications that must take place between two tasks. From
a timing cost point of view, the weight of the link is representative of the amount of data
that must be transferred; likewise, the weight of nodes is representative of the expected exe-
cution time of the task. This weighting of both links and nodes poses some representational
difficultics. The exact weighting is not neccssarily known at the problem definition stage
and may be dependent on the particulars of the target system configuration. For example, the
exccution cost of a task may depend on the operating characteristics of the particular
resource on which it is assigned at runtime. A second representation problem is that most
graph analysis algorithms treat either graphs with weighted links or graphs with weighed
nodes. In addition, communication links in this representation combine a system cost (com-
munication time) with a task interconnection and precedence relationship. Modifying the
representation so that the actual communication actions are represented by additional nodes
resolves these problems but introduces some additional problems when relating the task
graph to a representation of its mapping onto an architecture.* The architect is interested in
using graph analysis tools, such as those prescnted in chapter 5. The architect can not
change the graph weights, as they are derived from the intersection of the task definition and
the configuration resource pool composition. The configurer can only change the weights by

choice of resources composition, i.c. by changing architectural parameters.

* This will be discussed in chapter 7, when the concept of binding is introduced.

2.3.3. Sources and Sinks

In the ALPS framework, graphs contain sources and sinks which represent interfaces
between the ALPS system and the *‘outside world.”" Sources operate as task initiators: they
are invoked, typically by the receipt of data, and initiate a new task amival. In d-ALPS, that
arnival, represented by a collection of data frames with a unique arrival number, is then
introduced to the system with the implicit demand that it be operated on by processors
assuming roles of the directed task graph. In the d-ALPS specification, the sources are

assumed to operate at fixed rates: the inter-arrival time between task demands is constant.’

3.3.4. Graph Detailing Parameters

The above sections described the essential components of the task definition provided
to the configurer. Within a task definition, there are a number of elements that can be
changed. The task graph representation provides a set of overarching relationships among
tasks that must be conserved, but does not compictely specify an execution schedule. In par-
ticular, the representation docs not provide scheduling information about inter-task-arrival
rclationships. Both an architect and a configurer would want to investigate these changes
because they can affect an eventual execution order. These changes are called graph detail-
ing parameters because they impart static scheduling details to the task graph on top of the
static precedence information already encoded in the task graph. The parameters that can be
changed depend to a great deal on the underlying ALPS architecture. The changes to the
task detinition which are legitimate and have an affect on performance of graphs executed by
a d-ALPS configuration will be investigated. The rcader is referred to the d-ALPS
speciticauon i Appendix A for a more complete description of the task distribution mechan-

ism it employs. In addition, those basic changes which could be applicd to other underlying

* This assumpuon can be modified 1o more general task arrival notions without changing the underlying
represcntation.

ALPS architectures will be presented.

3341, Link Ordering

In d-ALPS. a node transfers information corresponding 1o successor subtasks via
DMA-style block transfers. Nodes in d-ALPS can not engage in block t-ansters of different
information at the same lim_c, but may transfer the same information to morc than one place
simultancously. As a node can engage in only one physical data transfer at a time and as it
may have to transfer a number of blocks of data, there must be some (not necessarily static)
ordering 1o these transters. For M transfers of the same information, there can be 0 to N
simultancous transfers® of the data to different destinations, and the order of those transfers
could be specified via detailing the the task graph. In d-ALPS, this ordering can not yet be
effected, but could be implemented with minor changes to the graph encoding and servicing
mechanism.

Recciving nodes arc subject to a similar serialization. Data transfers represented by
communication links into a node can not occur simultancously in the d-ALPS architecture
because the node that is the target of multiple receive requests can physically receive only
one data transfer at a ume. The order of the received data blocks could be specified in a

manner similar to that used for outgoing communication links.

The task graph represents data transfers and broadcasts of different information as pos-
sibly concurrent operations. To reflect the mapping of that behavioral description of tasks to
an architecture-specific, implementation ordering, the graph should reflect concurrency only
in subtasks that arc plausibly concurrent. From a representation point of view, a set of

graphs can be gencrated, cach of which provides a different ordering of transfers into a

® [t may not be possible or desirable to send to all destinations of the same information at the same tme,
i.c. a logically complete broadcast, though the cost is additional data transfers to those receivers which have not
been addressed.

- 44 .

node. Each of these graphs would then represent the onginal task graph which has been

detailed with additional ordenng information. A detailed procedure for creating these -

representanons is presented in chapter 5.

3.3.4.2. Link Priorities

In d-ALPS, a simple mechanism cnsures that a single physical ncde is tound to a sub-
task. This mechanism is described in detail in chapter 7 and again in Appendix A. One of
passibly several links that merge to a subtask is statically labeled a prioriry link; when bids
are processed for this link, the receiving node is bound to the subtask. Only the node which
has received the prionity link can bid for the remaining links. This mechanism guarantees
that a single physical node is bound and requires no control communication between the
reeeiver of the priority link and holders of other links until those links are bid for. There are
two major considerations with this approach. First, owners of nonprionity links that are
finished before the prionity link will engage in futile bidding requests. Second, the node
which has received the prionty link before all nonpriority links are finished will be in a
bound-but-not-processing state until all remaining links (and subtasks leading to their even-

tual transmission) are finished. The choice of priority links is encoded in the task definition.

3.3.4.3. Delay and Precedence Insertion

A task graph can be modified to include signals and delays that serve to break up syn-
chronizations of demand and reduce polling. For example, delays can be inserted to equalize
paths of execution that eventually merge. In the d-ALPS architecture, the absence of these
delays does not imply that collisions will occur, as in the case of pipeline processor colli-
sions, but will result in unneccessary polling or processor binding: additional overhead.
While delays can be added anywhere in the task graph without disturbing the functional rela-

tonships among tasks, their insertion at a task bchavior specification level, where execution

-45 .

Costs are not known, is problematic.

Delay insertion at the task graph definition level can be thought of as a timing-static

technique for path cqualizing or subtask ordering: it is a problematic technique when
specified in an environment where timing relationships are not fixed or not determinable. As
an altemative, an asynchronous methed of performing the same functions is signaling. A
nonoperational graph node can be added which gathers results or signals from one set df
nodes and causes the intiation of another noniniersccting set of nodes. While this represen-
tation gives no clue as to how the signal is implemented—there is currently no mechanism
in the d-ALPS architecture to support these signals—it provides a timing-indcpendent

mcthod of synchronizing subtask paths.

A technique similar to signal node insertion is precedence insertion. A precedence link
is one which has no data block (communication subtask) associated with it but is treated like
other links. In d-ALPS, as a priority precedence link, it would cause the binding of a pro-
cessor: as a nonpriority precedence link it causes a bound processor to delay execution until

this signal is rececived.

3.4. Architectural Parameters

A detailed presentation of the d-ALPS ar-hitectural specification and a discussion of
the high level logical control is provided in appendix A. This specification includes an over-
view of the functional requirements of an ALPS system and provides a detailed prescntation
of the distributed intemal and network control and communicatons functions, currently
implemented by interface control units. In order to specify and study ALPS architectures, it
is important to know what the parameters to the system are. Some of these parameters are
obvious. A system configuration is bascd on pools of similar resources, where the resource

count is a key parameter to that configuration. Some of these parameters are less obvious.

- 46 -

A resource intertace control unit (ICU) contains memory used for qucucing output results:
the amount of memory available for output queucing is, within limits, a parameter specifiable -
by the contigurer. Following is a description of the parameters that can be supplicd to a d-
ALPS contiguration architecture. Other architectures may allow more or less variability in
the architecture: while it 1s not the scope of this thesis to discuss the architecture descriptions
that are possible with architectures that have not yet been specified, where appropriate some

proposed deseripions that an eventual architecture should (or may) allow will be presented.

3.4.1. Resource Pool Size and Composition

The size and composition of the resource pool in an ALPS system gives an upper
hound on the processing capacity of the particular configuration. At minimum, there must
be enough processing capacity to handle the processing demands set by the task graph and
arnval rate of tasks. This architecture-independent, bascline allocation can be determined
statically via procedures described in chapter 5. The desirability of allocations which are
near this minimum lies in the small node count: processor utilization will be maximized at
the cxpense of task latency and responsc 1o unanticipated delays and innefficiencies. It is
difficult to denve minimum feasible allocations—allocations which meet execution perfor-

mance and correctness criteria and account for scheduling and control overhead.

In the most simple mapping case, each subtask in the dirccted task graph will map to a
distinct resource, and individual resources in the architecture will be single-purpose proces-
sors (hg. 3-3(2)). This allows a simple mapping scheme because cach resource can only
assume one ‘‘role’’ in the task. If we generalize slightly, there may be many subtasks in the
algorithm that require the same processor type; single-typed processing nodes in the architec-
ture now may exccute any ol those subtasks that require that single type (fig. 3-3(b)). If we

generalize some more, some processing resources may be able to execute as many of the

.47 -

A,B,C

Figures 3-3(a) through 3-3(c): A direct mapping can be made
between a uniquely typed subtask and a uniquely identified
resource; or, subtasks of the same type can be mapped to
single-typed processing nodes; or, subtask of different types

can be mapped to multiple-typed processing nodes.

KT I

processing types required by the task. A multiple typed node can map to any subtask in the
graph which requires one of the resource types that this node can function as (fig. 3-3(c)).
The allocation of resources refers to the type and composition of the processing (and
communication) resources assigned to a particular application architecture. The performance
of those resources refers to the individual processor execution time, in the case of proces-

<ors. and block communicaton transfer time (bit rate), in the case of busses.

Subtasks requiring the same processor type may place different demands on that pro-
cessor and incur different execution costs. In the signal processing application realm, the
amount of data that a subtask requires may be the indicator of the execution cost difference
between two subtasks that require the same processor. For example, the cost of a vector add
operation may be considered lincarly dependent on the size of the operand vectors. These
relationships get more complicated with the type of operation and the implementation of the
processing primiuve.

There may be processing primitives in a configuration that are capable of performing
an identical operation but have different operating characteristics due to differcnt physical
implementations. For example, a SIMD processor array implementation of a two dimen-
sional FFT operation has a processing complexity of order log,M for an M-point FFT
whereas a serial implementation (single processor) has a complexity of order M?logM. An
ALPS architecture which contains special purpose FFT primitives as well as gencral purpose
serial computing nodes (e.g. DSP boards with software libraries) will be able to handle FFT
tasks with varying execution costs; a particular FFT subtask will incur a cost determined by
the actual processor which receives that subtask. In this case the task definition can not
encode the execution costs for methodologies which model d-ALPS because the cost will

depend on (and vary with) the binding of a subtask to a resource, decided upon at runtime.

- 49 .

3.4.2. Communications Capacity

Communications in the d-ALPS architecture is supported by multiple, parallel data
busses. Access 10 these busses is controlled by a token-passing scheme in which a node
which currently ':o»\'ns“ the token is able to reserve space on data channels to sct up and
execute a small number of data block transfers. Aggregate communications capacity can be
simplistically viewed as the number of data busses times the width of each bus times the
clock rate. Tgnoning all overhead and inefficiencices. the aggregate capacity can not be less
than the aggregate demand that the task graph presents to the system. This aggregate
demand can be computed in a manner similar to that used to compute processing demand;
this will be reviewed in chapter 5. Unfortunately, demand for communications is bursty,
meaning that aggregate demand will give only a lower bound on demand. In addition,
demand will typically be buffered due to the restricted number of data channels; even though
data channels may be fast, their limited number forces serializaton points in the execution of
an algorithm. Determining the number of communicatons channels should, under the most
benign conditions. depend on the aggregate demand for data transfers: however, the degree
of parallel demand and the performance degradation of the system when this demand is seri-

alized might influence a configurer to change this allocation.

3.4.3. Memory

In d-ALPS, physical memory limits on processing resources bound the number of out-
put data blocks that a node may queue up. Under this physical limitadon, bounds may be
placed on the number and composition of queued data blocks. By imposing dynamic limita-
tions on the size and composition of qucucs so as to minimize the disparities in queue sizes,
scrvicing rates across distributed queucs can be cqualized. Limitatons that are placed for

this rcason may or may not be blind to the particular data blocks that are located on each

queue, as the overall service discipline is cqually unbiased. The actual queue ceiling should
be considered an architectural parameter but the mechanism employed to scrvice these -

Jucucs is a task mapping parameler.

3.5, Task Mapping Specification

The setting of graph detailing parameters, described under task definition parameters,
represents methods of detailing the original directed task graph so that while it is a function-
ally cquivalent graph, its mapping is more precisely, statically specified. The task mapping
parameters describe how the architecture executes the nonstatically ordercd portions of the
task. These parameters define relationships among concurrently executing tasks (different
armivals) as well as relationships between concurrently executing subtasks of the same arrival

which are competing for processing and communication resources.

Some of the above graph detailing parameters, as inputs to a configuration architecture,
would impose an ordering or partially static control above the baseline precedence relation-
ships of the original signal flow graph. For example, static link ordering on all links in the
graph would determine the scheduling order within each task although it ‘would not neces-
sarily dictate intcr-task-amival scheduling. If some, but not all, of the task scheduling is not
predetermined, then the system will dynamically determine the remaining options. This is
onc way 1o view the current scheduling decision hicrarchy. There is a general relationship
among tasks and a nominal ordering of task execution (priority and nonpriority links and
possible graph detailing) above that. The rest of the scheduling decisions are made by the
systcm and as long as the system doesn’t deadlock by excluding critical ordering options, the

tasks will be processed *‘correctly.””

The function of subtask servicing then is to fill in the gaps between (1) the order (static

partial schedule) imposcd by the directed flow graph and detailing parameters applied on top

of this graph and (2) a random, unbiased choosing of when and where subtasks that are not

rclated by any restrictions in (1) are assigned.

3.5.1. Data Queucing

In the general ALDS approach, subtasks waiting for assignment to a physical resource
will be queued until a suitable resource is found. This queueing can be done at a number of
logical locations. Subtasks can be qucucd at the site of the previously exccuted task: data
blocks sit on owrpur quenes. Altematively, data blocks can be transferred to a node that will
eventually exccute the pending subtask. Subtasks are then held on input queues. Finally,
data blocks can be transferred to an intermediate holding buffer which then sceks to dispatch
these pending tasks. This is logically similar to output queues but it has different
ramifications on queuc servicing and overhcad. The choice of where and how to store data
blocks (subtasks) pending exccution depends on the architectural support for queueing—in
d-ALPS there are output qucucs and no input qucues, and currently no specification for
intermediate queues—and the queue servicing mechanisms which are the kemnal functions of

task mapping.

3.5.2. Queue Servicing

In a comrectly functioning d-ALPS system, data blocks will quecue up at the sites that
they were processed until the associated interface control unit can present a requests for bids
for that data block and a bid is reccived. The assumption is made that a directed task graph
has been provided which does not provide a complete set of intra- and inter-task relation-
ships. That is, a node which has scveral data blocks to service does not have an accom-
panying servicing list. Scrvicing decision types can be classified as either graph dependent
or graph indcpendent. The specitication of a heuristic involves deciding how servicing deci-

sions are to be made and then encoding local weighting or servicing rules.

Graph independent servicing disciplines make no connection between specific data
blocks and their association with particular subtasks and task armivals. Servicing mechanisms -
in this category can basc decisions on general fairness principles; examples are equal scrvic-
ing rates, age. LIFO, or FIFO.

Graph dependent servicing disciplines can make usc of static information about locally
resident subtasks to assign priorities or preferred orderings. Mechanisms which fall into this
category might assign some relative preference based on the global age of a subtask (e.g. its
arnival frame number) or on the number or type of subtasks that must wait a subtask to com-
plete. This latter mechanism is called a downstream cost servicing policy. The d-ALPS
specification has a single mapping mecchanism and is based on a graph independent FIFO
discipline, though it is not strictly FIFO. The configurer operating with the d-ALPS archi-
tecture underlyving the configuration would not be able to choose alternate servicing mechan-
isms. The architect is interested in investigating these mechanisms; d-ALPS mechanism is

by no means the final word on task distnbution for ALPS.

3.5.3. Priority Bidding

It may be desirable to assign subtasks for which a gradient of processor performances
exists to faster processors. This is particularly true if the configuration architecture contains
special-purpose primitives for some but not all subtasks processing types. A general purpose
resource (such as a DSP primitive which can perform a multitude of functions) may be com-
paratively fast in executing some subtasks and comparatively slow in executing others for
which special-purposes devices are allocated. The specification of priority bidding involves
encoding a partial mapping preference of specific subtasks to particular processor perfor-
mance classes. The d-ALPS architecture provides a subtask-independent mechanism for

prioritizing utilization of processors of higher performance.

.

n

‘o
.

3.6. Conclusion

The above parameters require isolated and joint investigation. Isolated investigation of |
task definition parameters is afforded by static analysis methods, which assist the architect or
configurer in determining basic task requirements and choosing graph detailing parameters.
Stmulation approaches intcgrate the task definition into investigation of architecture and
mapping parameters. Architectural parameters are studied in isolation by a carcful reading
and anaiysis of the panticular architecwre specification. Individual components can be proto-
tvped or modeled; they can be supplied with random requirements so as to avoid biasing the
investigation by a panticular sct of task definition and mapping parameters. The underlying
architecture can be simulated or emulated. These are joint investigation methodologies that
require task definition and mapping parameters to function. Task mapping parameters can
be studied by schedule simulation, a high-level tool for investigating task distribution heuris-
tics independent of an underlying architecture. This simulation requires task definition
parameters and configuration architecture parameters, such as resource pool composition.
Panicular implementable task mapping mechanisms can be studied by architectural simula-
tion. This mecthodology incorporates mapping, task definiion and architectural parameters
that are salient to the level of detail of the simulation. The remaining chapters introduce and

describe the static analysis, schedule simulation and architectural simulation methodologies.

CHAPTER 4

Problem Setup

T...» chapter will introduce four methodologies for studying allocation and scheduling
problems for d-ALPS architectures. The development of these methodologies was motivated
by the limited usefulness of detailed architectural simulation to address a range of study
objectives. These objectives included gathering basic information about the underlying task
set, characterizing the complexity of scheduling and allocation problems, examining some
performance tradeoffs of particular scheduling approaches, and verifying in detail a particular
approach. In the sections below, a discussion will be given of how the alternative metho-
dologies evolved from percecived and identified shortcomings of the detailed architectural
simulation, the fourth methodology. Next, a review of each of these methodologies will be
presented. These reviews will serve as a preface to the remaining portions of this thesis.
The scope and structure of the remaining chapters is to examine and evaluate alternative
problem representations, cxplain why and how those representations or models are useful,
describe the analysis and conclusions drawn from these methods and discuss further applica-

bility of the approach.

The four methodologics are static problem analysis, state/schedule generation, schedul-
ing simulation, and detailed architectural simulation. Static problem analysis rcfers to
analysis techniques which cxtract basic information about the demands that a specified task
and arrival ratc poscs on an application system. The objective of this group of techniques is
to characterize the task set so that basic resource requirements can be discemed and alterna-
tive ordcrings of tasks can be enumerated and compared. Statc generation encompasses

methods of representing a simplified, deterministic version of the task and the architecture.

-84 -

.

N

n
.

The task-architecture conjunction is viewed with a finite state machine representation. Find-
ing and cnumerating schedules can be viewed as a problem similar to state gencration and -
cyele detection. There are techniques of deniving the states of this FSM; however, they are
computationally cxpensive. By demonstrating these techniques the difficulty of generating
cven simple, static schedules can be established. Schedule simulation is a method of com-
paring task mapping and allocation heuristics. Its objective is to provide an incxpensive way
of analvzing the underlyving task set in a highly instrumentable environment and determining
what tvpes of allocation and scheduling strategics may work better than others. Detailed
architectural simulation provides a performance view of the actual processing of a task on a
contiguration architecture. The objectives are to evaluate the performance of a chosen allo-
cation aind scheduling strategy on a target architecture and to decide whether that
contivuration meets performance criteria. Simulation can be used to determine allocation
and tradeoffs by iteratively simulating with different initial parameters; this is a fairly costly

approach but may be well wonth it when considering an application configuration.

A straightforward approach to studying allocation and scheduling problems within the
context of an ALPS-like architecural approach is to choose a set of example problems,
simulate the behavior of a given architecture that implements each problem, and derive con-
clusions or observations about the system, task mapping and task detailing parameters. Con-
sider the following example. Figure 4-1 shows an application graph and table 4-1 gives
corresponding information about data transfers between subtasks. Table 4-2 gives informa-
tion about the execution architccure. By submitting this algorithm and architectural descrip-
tion to an architectural timing simulator, various performance results can be generated.
These results reflect the capability of the allocation and the underlying scheduling mechan-
isms of the configuration architecture. It is imponant 1o keep in mind that the configuration

architecture is compnsed ot individual nodes and busses that arc described an architectural

Algonthm (task) Information”
Subtask | Processor Type Transmit Block Size
(k bytes)

di Source 2
d2 Source 2
nOs Magnitude 2

N Vectortadd) 2
1502 Vcctor(subtract) | 2

»done Sink NA

Table 4-1: Task information for simulation example.

specification. One performance metric of this architecture is the utilization of processing
resources. the percentage of time that processors are executing. A simulation of the architec-
ture can provide this utilization information. Figure 4-2 shows processor utilization for the
architecture as it executes the algorithm in figure 4-1. Note that processors spent most of
their (aggregate) ume sitting idle. Two other metrics are the throughput and later of the

svstem. The throughput is the rate at which tasks are processed by the system, and the

Architecture Information
Resource Tyvpe | Execution Time (usec) Quantity
Source 2000 (interarrival time) 2
Vector {add] 800 [subtract] 1500 4
Magnitude 1200 3
Sink 0 1
Bus [16 bits@10 MHz] SO per 1K block 2

Table 4-2: Architecture information for simulation example.

{

/;{4/,./ [\ ~
TR N
SRE{ [VECT

Figure 4-1: An example task graph and architecture.

latency is the time it takes to process those tasks. Figure 4-3 demonstrates that, after the
“‘pipe”’ fills up, tasks are being processed at a rate of about 1 cvery 2000 microseconds.
This ratc is comparable to the interarmval ume of tasks: the system is keeping up with the
specified amival rate. The latency of the system is 2800 microseconds and is fairly constant.
As a rcsult of the above simulation, we might want to reduce the pool size of various
resource types and investigate the results. This may vicld a more efficient (and inexpensive)
implementation that maintains a desired level of performance. A new, reduced allocation is
shown in table 4-3. Performance metrics for this allocation are shown in figures 4-4 and 4-

S. Nouce that the processor utilization is much higher (there are less processors for the

RS et

P JURTt e

PR by

—System_inst

tpoen,

T a0 s
< <

[04]
<)
(]
(&)

time (usec)

I

i
!

latency

W ~-.-rcsecconds

~RONOPN

3
W)

—system inst

3

DNy o
N Y N
O Y Cr

B> Mg 4=y
1)
[o+]
(&)
(@)

¥

- O o

0 8000

time (usec)
.]

Figures 4-2 and 4-3: Processor utilization and system
latency for the example task graph and architecture in
figure 4-1.

Architecture Information
‘gggggrcc_"rﬂ__*—_ﬁxgc_miﬂn Time (usec) Quantity
Source 2000 * 2
Vector ladd] SO0 [subtract] 1500 2
Magnitude 1200 3
" Sink 0 1
| Bus T16 bits@ 10 MHz] 50 per 1K block 1

Table 4-3: Modified architecture information
for simulation example.

percent calculation). The latency is slightly larger (2871 pscc), but the system is still able to

accomodate the specified throughtput.

Many of the parameters described in the previous chapter could be varied to develop
relationships among them. This approach, straichtforward as it may sound, is problematic.
Results derived from this detailed simulation and analysis on ‘‘real-world’" example prob-
lems are subject to numerous cxtrancous considerations: What is the effect of the underlying
support architecture? What are the effects or influence of memory requirements or limita-
tions? What are the scheduling mechanisms employed by the architecture? Moreover, gle-
aning extensible information and observations about scheduling and allocation paramecters
from specific problem examples hinges on the necessity of finding useful benchmark prob-
lems. In the above example, the results provided are applicable only to that specific algo-
rithm and architecture. This algorithm can not be considered to represent a class of applica-
tions and thercforc may say litte to nothing about allocation or scheduling approaches to
related problems.

Following is a review the kinds of information that architectural simulation provides,

and the view of the system that it assumes. From the user’s point of view, an architectural

- 60 -

e mheeem e oan

3
]
e
1

c e —System inst

3 oo

<

(2 I ANY

{3y
ladafabod dat o talala]

L O IO /% TV O

+
Y o e

Time (usec)

e —system_inst

P
s
i
n v TITrTrYY i LAASAE RERRAS BARS

0 8000

' time (usec)

b
L
Figures 4-4 and 4-5: Processor utilization and svstem

latency for the task graph in figure 4-1 and the
architecture information in table 4-3.

.61 -

simulater casts the effects of varying system paramcters into performance measures for
which the simulator was instrumented.! In the above example, the performance measures that -
the detatled architectural simulator supported included latency, throughput and utilization of
processors, busses, and memory. These measures were computed over a limited number of
domains, Adding more instrumentation 10 a simulator is often a difficult enterprise, but
maore importantly, from a methodology point of view, presupposes to some extent knowledge
ol the objective of the simulation. The simulator builder must be conscious of the metrics
that will be interesting to both an engineer performing an ALPS configuration study— a
confizurer— and an engineer studving basic allocation and scheduling problems and design-
ing an underlying support architecture such as d-ALPS—an architect. A dctailed system
simulation. as implemented, provides a configurer with performance view of the system. A
simulation system which caters to an architect should provide “‘tools for tinkering around.’
What this means is that scheduling and allocation investigation can be supported by separate
but integratable utilities that perform some specific analysis chores and include different

assumptions of the underlving architecture.

The mcthodologies that will be presented attempt to fill in the knowledge gaps by pro-
viding investigation tools to the architect. The objectives of the modeling methodology then
are reconciled with the varying scopes of the investigation. In exchange for excluding many
of the opcrauonal details of a particular architectural specification, alternative representations
and system models provide some additional insight into underlying scheduling and allocation
problems. Once a representation proves fruitful, it can be refined and retrenched so that it

morc closely characterizes the undcerlying architecture.

"It is also possible to create a simulator that provides an execution trace of the system that it is simulating.
This type of informaton is problemauc because it 15 often wo difficult to filter out useless information.

(Detailed h
Task, Mapping,
and Architecture
Parameters

Figure 4-6: A representation of the methodology information
hierarchy.

The alternate approaches chosen were developed by deciding upon the objectives of the
mcthodology and then deciding how to fulfill these objectives. The first approach, static
analysis, fills the objective of leamning about the baseline demands that a task set and arrival
will place on a hypothetical system and whether a ‘‘reasonable’ system can be configured.
This provides pre-mapping information, whereas dctailed simulation provides information
about a particular architectural mapping. The second approach, state enumeration and gen-
eration, gives a measure of how difficult it would be to investigate a particular scheduling
strategy and provides an cxample framework for generating these strategies. This provides a
complexity comparison and a comparison 10 a methodology suitable to a hypothetical archi-

tecture with scaled down timing considerations. The third approach, schedule and allocation

simulation provides a uscful set of ools to evaluate different scheduling heuristics and to try
different graph ordering and prority assignments. This allows the user to change some -
underlving architectural assumptions that a simulator would not provide, and provides a
low-cost way of generating these aliernatives where a simulator would require high-cost
maodificaton.

The four modeling methodologics do not make identical assumptions about the under-

Iving scheduling problems and then perform different types of analysis. Instead, the four

(Detaiéd)

Task,| Mapping,
and {Architecture
Parameters

— y
J

\

Static
Analysis

Architectural
Simulation

State
Enumeration

Schedule
Simulation

Figure 4-7: An alternative representation of
the methodology information hierarchy.

- 64 -

methods make use of different types of information and require differing levels of detail
about the underlving architecture. Two approaches to representing the information hierarchy -
are shown in figures 4-6 and 4-7. The former approach provides a super-sct of information
about the possible descriptions of the task set and architecture, but part of this information
licy in alternatives that are never cnumerated or never considered. A more realistic view
then is shown in the representation of figure 4-7, in which overlapping subsets of informa-
tion are extracted and supplied to the mcthodologies. Table 4-4 provides a summary of the
s of information about the task/architecture that is provided to cach of the modeling
mcthods, Note that the static analysis method is architecture-independent, whereas architec-
tural simulation requires a tull description of the architecture which includes detailed imple-

mentation information that would be uscless to other analysis methods.

Following is a review of each of the four modeling methodologies that have been
introfuced. In cach section below, a methodology is summarized, its objectives are
revie ved and a brief evaluation is given. These scctions scrve as a rcader’s guide to the

rem..nder of this thesis.

Architectural Information Required by Model

Static Analvsis none
State Generation resource composition, queue servicing heuristic
Schedule Simulation resource composition and addressing,

queue servicing heuristic(s),

graph mapping alternatives
Architectural Simulation | complete architectural specification,
fully defined mapping specification and
implementation

Table 4-4: Architecture information provided to each model.

. 6% -

4.1, Static Analysis

A directed flow graph provides an algonthmic representation of a problem in terms of
computation subtasks and communications and precedences among those subtasks. The
mapping of this graph onto a distributed architecture—in which cach algorithmic node is
mapped onto an architectural node—produces two classes of allocations. The first class is
one 1n which there are ample resources to process this task set on a demand basis. That is,
subtasks wait only on the completion of other subtasks with which they are involved in a
precedence relationship and do not have to wait on processors or resources once they are
ready to execute. The demand graph can be modificd to account for all architectural and
timing necessities excepr a lack of resources.> An example of an acceptable modification is
the re-ordering of a some of the processing and communication subtasks to accomodate pro-
cessing and communication by a target architecture. The incorporation of demand graph
maoditication allows the class description to encompass a large class of static solutions. This
demand processing environment can take many forms. In a static form, resources are allo-
cated and connccted in a temporally-equivalent manner, i.c. there are either private proces-
sors and data channels or reserved time/space on existing channels for each subtesk. In a
dvnamic form, ample resources accomodate the demands of the task set and while
time/space is not reserved, there is enough surplus processing/communicating power to exe-
cute the graph directly. The basic characteristic of this class, regardiess of its implementa-
tion form, is that task execution follows the demand described by the directed flow graph
and a schedule can be directly inferred from the (possibly modified) graph. An allocation

which facilitates this demand execution will be referred to as a class one allocation.

? These architecture allowances may not include systematic queueing o make up for lack of resources un-
less that queucing were explicitly built into the oniginal apphication graph.

- 66 -

In the second exccution class, the task delinition poses processing requirements on the
system, but an implementation schedule can not be inferred from this definition. The system -
processes tasks according to its own scheduling and assignment rules. This schedule may be
generated statically or dynamically. General purpose computing systems fall into this broad
category as they have scheduling policies and resource availabilities which are defined

independently of a particular task graph,

The reason these two classes have been defined is as follows. When evaluating the
directed flow graph, profiles of processor and communication resource demands can be
made. Architectures of the first class require the minimal system resource allocation that
accomodates peaks in the demands of the task description. Architectures of the second class

require system resource allocations that must, as a minimum requirement, provide resources

to accomodate average demands of the task description.® This allocation will be referred to

as a ‘‘class two'' allocation. The diftference in the two classes, then, is whether allocation

and scheduling decisions must accomodate peak or average resource demands.

The *‘static analysis™ modecling methodology is used to expand a task definition graph
to include some assumptions about the underlying architectural specification and protocol
(provided in appendix A). This is done in order to devclop rough estimates of the peak and
average allocauon requircments. The steps in deriving this expansion are as follows. A
standard representation for processor and communication resource requirements and pre-
cedences is created, including explicit representation of communication tasks. The ordering
and binding of proccssors is then taken into account by serializing the order in which com-
munication tasks lcave common sources and merge to common dcestinations. A steady

demand period is derived by computing the latency of the graph and then overlaying

3 From a statistical pomt of view, if a fixed servicing rate equals an average demand rate, the system is
bound to bottleneck. The servicing rate must be greater than the expected demand rate.

vinual
sink

Figures 4-8(a) and 4-8(b): An example application graph and.
and an expansion of that graph to represent an execution order.

-67 -
virtyal
source

- 08 -

representations by a detined interarrival time. The computations are performed by lincar
programming techniques.

A simple example of this technique 1s as follows. Consider the application graph in
ficure 4-8¢a) and the subtask timings provided in tables 4-5 and 4-6.* The graph can be
expanded 1o represent one of many possible execution order. This expansion is shown in

firure 4-8(b). Notice that the precedences of figure 4-8(a) have been preserved, but

+4-5: Processing Subtask Information

Subtask | Processor Type | Exccution time
(generic units)

pO Source 8

pl Source 8

2 A 8

p3 B 4

pd C 5

ps Sink 0

po Sink 0

4-6: Communication Subtask Information

Subtask Communication time
_(genenc units)

c0
cl
c2
c3
c4
¢S
c6

QN OO At WY

Tables 4-5 and 4-6: Processing and communication
subtask information corresponding to task graph
in figure 4-8(b).

* The umings provided for the sources represent the interarrival time of tasks.

.69 -

additional vnes have been added to serialize communication broadcasts and mergings. The

latency of the resulting graph is thity time units and can be computed via lincar program- -

ming methods by considenng it as a maximum path problem,

The demand protiles generated by this technique as an intermediate result represent the
demands for processors and communication resources that are imposed by the underlying
task description in the absence of restrictions imposed by configuration allocations or over-
head costs, but in the presence of communicaton scrialization and binding. If a
configuration architccure which f{alls roughly into the first exccution class is desired, i.e. an
exccution schedule is implied in the task description, allocations at or above the peaks in
these demand profiles are required. All other allocations will create a system which falls
into the second class. Assume that the inter-arrival time of tasks in the above example is
cizhtunits. A set of demand profiles for the stcady state system is provided in figures 9(a)
through 9¢d). Notice that both class one and class two processor allocations can be accomo-
dated by providing onc of cach resource type. The peak demand is one processor and the
average is less than one. Of course, depending on the incfficiencies of the execution
environment, one processor may, in fact, not be sufficient. In figure 4-9(d) the demand
profile for communication resources is provided. This application is communication inten-
sive. A raw rato of communication 1o processing time is 1.75. In order to provide a class
one allocation, at least five communicaton channels arc required (assuming no
inefficiencies). In order to provide a class two allocation, at least four communication chan-
ncls are required. Chapter 5 will describe the application of static analysis in terms of an

cxample and will evaluate its applicability.

-70 -

Processor "B"

Processor "A"

Demand Profile for Processor "A"

-
1

1 2 3 4 5 6 7 8
time (generic units)

Demand Profile for Processor "B"

3 4 5 6 7 8
time (generic units)

Figures 4-9(a) and 4-9(b): Demand profiles for
processor types A and B.

-71.

Demand Protile for Processor "C"

- 1-
3
7]
7]
]
Q
°
Q.
0 - v — v
1 2 3 4 5 6 7 8
time (generic units)
Demand Profile for Communication
o
S
©
Q
=
3
g
E
o]
Q

1 2 3 4 5 6 7 8
time (generic units)

Figures 4-9(c) and 4-9(d): Demand profiles for
processor type C and communications resources.

4.2. State. Control Strategy Generation

A second methodology for studying scheduling alternatives involves the generation of -
states which represent the mapping of the task graph onto an architecture. A control stratcgy
is a deterministic, cyclic schedule of task (or subtask) initiations and communication events.
It can be used to cither impose a schedule on a system or describe a system operating in a
steady state. That 15, 1f a system has a complete description of a nonvarying task set, a
deterministic procedure for mapping those tasks, and a fixed task arrival rate, then the sys-
tem will exhibit a periodic behavior.™ Given a simplified model of the task set and the under-
Iving system. it should be possible to generate schedules which demonstrate this periodicity
in a manner similar to the control strategy gencration for processor pipelines.® The substan-
tial difference between pipeline scheduling and this method is that the processor pipeline
case is one in which a strategy is developed 1o determine a mapping, whereas in the
enumeration methodology a strategy is determined to describe a mapping. A conuol stra-
tegy tor processor pipelines is implemented as a hard-wired schedule, whereas this mapping

descnption falls out of the scheduling and control mechanisms of the underlying architecture.

The applicability of the schedule enumeration approach to the configurer is limited
because of its computational complexitly and the number of assumptions about the underlying
architecture that must be made. The dircct utility of this method to the comparison of
connguration architectures is fairly limited due to the number of states that must be included
in order to develop a reasonably detailed model. The applicability of the methedslogy to the
architect hes in the companison of the complexity of the class one and class two scheduling

domains. The methodology provides a demonstration of the mapping complexitics of the d-

* The above assumptions are oo simplistic if tasks take longer W execute than cheduled or if there is any
invanabihity in demand on the system or in resources available to the system.

® The conzrol stategy discussed here is the general one, presented in chapter X, in which latency schedules
and delay inseruons are the degrees of freedom in determining an optimal schedule or one that meets application
demands

.73 .

ALPS architcctural approach by applying a modeling methodology that is widely used in
simpler architectural domains to a domain which has additional scheduling and allocation -
dimensions. The size of the problem into perspective by providing a relationship between
the complexity of scheduling and mapping and the complexity of graph path analysis prob-
lems. The approach is a valid academic exercise in that it demonstrates the scale of the
problen' and validates the investigation of heuristic-based alternatives for ALPS scheduling
and allocation. Chapter 6 will provide a dcetailed description of this state gencration tech-

nique and will discuss its relation 10 graph analysis techniques.

4.3. High Level Scheduling Simulation

A third approach to studying task serviiing and scheduling altematives is schedule
simulation. The approach was motivated by the desire to model scheduling events at a
macro-event level—as opposed to performance metric level—while automating the modeling
process so that large-grain architecture parameters could be accounted for and studied. A
simulator was ‘:veloped which provides a method for examining scheduling and allocation
alternatives. The parameters to this simulator include the task graph, the allocation of a
configuration architecture (or a method of iteratively generating these architectures), and the

subtask ordering methodology employed by this System‘7

The simulator takes a demand-versus-supply view of scheduling and allocation prob-
lem. The application architecture is modeled as a task demand server; at each stage a
demand is presented to the system, represented by the activation of new subtasks, the ongo-
ing exccution of subtasks, and the arrival of new tasks. Some of these demands can be put
off (queucd) and some must be served immediately. The simulator then acts to fill demand,

assigning as many subtasks as allowed by the allocation. When the demand outweighs the

7 No assumption is made as to the feasibility of the described ordering methodology. Some methodologies
may not have feasible implementations in a distributed, dynamic assignment architecture because of the magni-

.74 .

supply, the simulator tums to a heunstic-based delay server which ranks the importance of
pending subtasks according to one of a suite of heunstics. This ranking makes use of cither -
centralized or distributed information about tasks and detcrmines which tasks must wait and
which can proceed. Allocation altematives are considered in the context of scheduling
heunistics by iteratively applyving the simulator 0 systems of different allocations: the simula-
tor keeps track ef the types of delays that are induced by nongencrous allocations. The
cxperimenter is then provided with a view of these ordering tradeoffs as well as resulting
performance measures.

irom a coifigurer’s point of view, this level of simulation can used to determine an
initial allocation and scheduling structure for a panticular application. Since timing informa-
tion particular to an architectural specification (such as bidding time) is not incorporated, cer-
tain allocations will be uscless, from a configurer’s point of view, if they are based on a
peculianty of task timing synchronizations that are explicated by this simulator. On the
other hand, comparisons of scheduling heuristics will be applicable (i.e. scale up to more
*‘accurate’’ simulators) because the scoring and heurnistic delaying functions are not precise,
and will model imprecision in timing synchronizations in a final system. Furthermore, varia-

bilities in timings, such as exccution time distributions, can be added to this level of simula-

tion.® From an architect’s point of view, this level of siraulation can provide useful com-
parison information about general scheduling and allocation approaches. Chapter 7 will
describe this type of simulation in detail and will illustrate its effectiveness by c~nsidering

several examples.

tude of control information transfer.

A general model of a software module considers it as requiring a random number of in-tructior., each
taking a random time. By extensicn to the central limit theorem, the computation tme would tend 0 a ,aussian
distnbuton [Dubo¥?].

.78 -

4.4. Architectural Simulation

A fourth method of analysis is the extraction of information about the performance of
particular tasks on fully specified architecturcs. A simulator which models the timings of a
particular architecture was developed. The simulator models the appearance of new tasks on
physical sources at fixed intervals and the subsequent assigning of subtasks via a distributed
and dynamic bidding scheme. The simulator provides aii environment in which an algo-
rizim® and an architecture can be specified and the performance of the architecture can be
vicwed by choosing from a set of performance metrics and domains, or categories, over
which those metrics are computed.'® The simulation environment provides verification and
performance comparison of a subset of the task, system and mapping parameters prescnted
in chapter 3.

A basic comparison between architectural simulation and a scheduling simulation is
that an architectural simulator trades detail and accuracy in the representation of a specific
architecture for degrees of freedom in parameters to vary. Some of the mapping parameters
arc realized in the architectural specification. These include queue servicing disciplines and
link ordering choices. In order to vary these paramcters to an architectural simulator, an
implementation approach must be designed and verified, and a simulator built to model that
approach. For example, if a priority queue servicing discipline is to be investigated via
detailed simulation, it would be necessary to first determine modifications to the architectural
specificauon that would implement that discipline. A sccond (and costly) necessity would be
the design or modification of a simulator to accomodate that new specification. Chapter 8
will describe a simulator which modecls the performance of an initial ALPS architecture

which roughly corresponds to the architecture described in appendix A.

% An algorithm refers 10 a signal processing algorithm, described by a directed flow graph. The term task
set is used in this thesis to generalize the applicability of the architecture o other domains.

% A description of a prototype configurer’s simulation environment is presented in [Mano87}.

-

CHAPTER 5§

Static Analysis

Static analysis of a task refers to analysis of that task independent of panicular alloca-
ton or scheduling disciplines 1o derive some basic information about the task. A directed
task graph representation provides, on inspection, interconnection information about the
graph. By some fairly straightforward computation, the representation can also provide tim-
ing information. This timing information can be used to derive rough estimates of processor
and communication resource requirements. These estimates can then be used to determine
whether it is conceivable to configure an ALPS architecture that provides an on-demand pro-
cessing environment, as opposed to onc which requires queucing to buffer the demand for
resources. Static anatysis includes enumerating the graph detailing parameters described in
chapter 3. Through this enumeration and subseqent application of some simple techniques,
relationships between specific graph orderings, resource requirements and latencies can be

denved.

5.1. Overview of Methods and Objectives

Following is an overview of the methods and objectives of static analysis. The task
representation is refined and a method of generating these refinements is given. The objec-
tive here is to impart a uniformity to representation. The cxpanded directed graph represen-
tation provides a view of the most concurrent mapping of a task onto an architecture. Limi-
tations imposed by the underlying architecture are included so that concurrency represented
in the graph matches concurrency that is conceivable in the architecture. Those limitations
that affect this most-concurrent representation are built into the representation. Once a
representation for a particular ordening is obtained, static analysis allows the manipulation of

-76 -

-77 -

Figure 3-1: An example directed task graph.

¢raph detailing parameters so that lower bounds on latency can be determined. Likewise,
upper bounds on the concurrency of task execution can be found by experimenting with
these parameters. Finally, a profile of resource demands that a task imposes in a class one
allocation environment can be found. This profile can be determined for an individual task,
and can be considered a composite measure of task concurrency. The profile can also be
found for a system in which tasks arrive at a constant rate. It will be shown that in an
environment in which there is no queueing of subtasks, the resource demand profiles that are
generated for a period equal to the task interarrival time are steady profiles. That is, the
demands are periodic, and this period can be found easily. Thesc periodic profiles represent

the *‘resource scheduling™ of an idealized system in which all timing is statically deter-

mined, resources are always available, and decision-making time is zero.!

' If the decisien-making times were known and constant, they could be casily included in the model. This
is stisl anidealized case.

.78 -

5.2, Graph Transformations

Consider the directed task graph in figure 5-1. Nodes v, and v, represent sources, or
task initiation sites. From a task processing point of view, those sources perform some
operations and then allow their successor nodes (vy and vy) to commence processing. The
directed links ¢, and ¢, indicate these successors. When both vy and v, are finished, nodcs
v and v, can commence. These nodes are sinks, and their completion represent the comple-
tion of the task. From a processor nenwork point of view, nodes v, and v, represent inter-
faces to the network from the outside world. They are hardwired physical devices that
receive data, pertform sonie operations on some of that data, and then find successor proces-
sors to act as the successor nodes in the directed graph. The directed links ¢y, ¢ and ¢y
indicate the connections between subtasks and imply a communication of information

required for cxecution. In a uniprocessor or tightly coupled environment, this information

processing

subtask ——p 0

communication
Subtask

Figure 5-2: A task graph which explicitly represents
communication subtasks.

.79 .

rnay be a signal or a pointer. In a loosely coupled cnvironment, such as the architecture
supported by the specitication in Appendix A, this information may include signals, code, -
and data. The links can be weighted with the cost of this communication subtask in much
the same way that nodes can be weighted with the cost of processing. A simple transforma-
tion of the task graph which explicitly represents communication subtasks is shown in figure
5-2. The links between subtasks of this graph represent precedence relationships and have
no weight assigned to them.?

A representation convenience is to use nodes that lack some of thesc attributes to aid in

connecting *‘resource-based’’ nodes. These nodes, called null nodes lack resource type and
execution cost attributes. An intcrmediate transformation can be made to a graph which iso-
lates subtasks. This isolation is shown in figure 5-3: the dark shaded nodes arc null nodes
which precede and succeed each processor or communication subtask. This isolation will

aid in rep- :senting the permutations that will be made on the graph.

Once the task graph has been transformed to explicitly represent and isolate communi-
cation and processing tasks, the graph can be modified to represent a sct of execution orders
that are supportable on an underlying architecture. If a network of processors could be built
that could accept the problem graph in the form shown in (fig. 5-3), then this next step
would not be necassary. If considerations must be made to accomodate capabilities of indi-
vidual nodes to transmit and receive information, and to accomodate interconnection limita-
tions, then this step is necessary. Hercin lies a semantic problem. The architecture we are
discussing is an underlying approach which is, in its ideal, application and configuration
independent. The graph modification should, at this stage, accomodate the specification limi-

wtations and not the limitations of a particular configuration architecture. Onc way of viewing

2 Thus far, the nodes in these graphs have the following attributes: weight, or execution time; resource type
required; and the number of links which merge 10 and emanate from the node.

Figure 5-3: A task graph transformation with isolated subtasks.

and follo ~.ng this distinction is to model the limitatdons of individual nodes in the network
first and later model in limitations that ‘‘rcasonable’” configurations would impose. For
example, it would be acceptable to model in a limitation that nodes can only transmit one
data strcam at a time, but it would not be acceptable to, at this stage, model in a bound on
the number of resources that can exist. These global limitations will not be ignored, but will

be vicwed as part of an allocation problem, not a representation problem.

-8l -

As an example, we will consider a set of limitatons that arc imposed if the underlying
support architecture described by the specification in appendix A is chosen.’ The architee- -
tural limitatons stem from the recciving and transmitting capabiliies of nodes. It is
assumed that all processing nodes can broadcast data and receive broadcasts. Nodes can
transmit a single stream of data to multiple destinations but can only reccive one stream of
data at a ume. Funher architectural assumptions will be played out at a higher level, but at
this level it is important to consider that a data transfer takes place uninterrupted; transfers
are not multiplexed onto the channel. Likewise, the particular ALPS architecture described
in Appendix A predicates that subtasks demand uninterrupted time on resources that are
capable of acting as the attributed type. Given these restrictions, the directed graph, as it
stands, is ambiguous with respect to the ordering of transmissions into and out of nodes. A
further ambiguity is the representations of groups of links as ports. While the communica-
tions it of nodes appear to be distinct, some of the communicatdons may be transfers to
multiple receivers. A grouping of these receivers into a transfer port significs that a single

communicagon cvent is initiates multiple nodes.

A first step in resolving these ambiguities is to note the degrees of freedom. A node
with many communication ports emanating from it can send those ports in any order. Some
of these ports may contain a single link and some may contain multiple links; the ports with
multiple links can be sent repeatedly, as long as all links are eventually sent. This means
that new communications events can be spawned by removing links from ports. Each node
which has ¥ ports with one link in each port contributes to N! perutations on the task set
Each port with M clements contributes, via multiple sends, a large number of possible per-

mutations on the task set: A group with 2 links contributes 3 possible sending orders; A

* The point to be made here is that this stage in modeling is not a convenient quick fix 1o suppont the ex-
ample underlying architectural specification. Rather, the underlying architecture is a convenient example to
demonstrate the graph transformations.

group with 3 links contributes 13 possible sending orders; A group with 4 links contributes
55 possible sending orders.

The degrees of freedom on the receiving side are as follows. A node with many input
ports merging 10 it can receive these links in any order. There is always one link per input
port. Each port with ¥ merging clements contributes N'! permutations on the task set.
Keeping in mind that cach of these contributing permutations multiplies the total ordering
possiblitics, it may be impractical to enumerate all sending and receiving orders for large
task sets. Complicating matters is that, as will be shown later, some of the orderings are not
feasible because they introduce deadlocks in the execution order. That is, they require A
before B and B before A. If one of those static orderings was applied to a system, i.e. if
any underlying architecture is required to process links in that fixed order then it would

block on servicing subtasks in the graph. These deadlocks, fortunately, are easy to detect.

5.2.1. Resolving Send and Receive Orders

Following is a procedure for incorporating the sending and receiving link orderings
into the directed graph representation. A task graph can initially be labeled arbitrarily.
Transfer pons that encompass several links are shown by encircling the tails of those links.
Representations which include the architectural limitation of sending data a single block at a
time can be derived by serializing multiple links leaving from a single node. Assume that
the communications subtasks are ordered cy,cy and communication ¢, will occur first
(fig. 54(a)). The tail of the link leading out of ¢, is removed reattached to the null node
that precedes the communication event ¢;. The tail of link lcading out of ¢, is then removed
and rcattached to the null node that precedes the communication event ¢,. And so on (fig.
5-4(b)). Represcntations which include the architectural limitation of recciving data a single

block at a time can bc derived via a similar serialization. Assume that the merging com-

Figures 5-4(a) and 5-4(b): A subtask with four emanating
communications subtasks and the serialization of those subtasks.

munication subtasks are ordered cq, . . ., ¢y and communication ¢, will be received first (fig.
5-5(a)). The hecad of the link leaving c¢q is removed from the null node that precedes the
destination (vo) and is attached to the null node that precedes ¢,. Likewise, the head of the
link leaving ¢, is attached to the null node preceding c,. This procedure is repeated for

nedes ¢y, ..., cy-y Link cy is not disturbed (fig. 5-5(b)).

The following example will make use of these serjalizing methods to illustrate some

link cnumeration and ordering concepts. Consider the task subset in figure 5-6(a). This

-84 -

Figures 5-5(a) and 5-5(b): A subtask that is merged to
by four communications subtasks and the serialization
of those subtasks.

subsct will be called a subgraph because it rcpresents a subset of a task graph. In this
example, there may be subtasks that precede v, and v, and there may be subtasks that
succeed vy and v Figure 5-6(b) shows an expansion of the task subgraph which clearly
identifics the communication subtasks. Note that v, initiates two distinct communication
subtasks each with a singlc destination but v, initiates the single communication subtask ¢,
which has two dcstinations. This latter communication subtask represents a broadcast to

multiple nodes, and as mentioned carlier, the broadcast can occur once to service all reci-

-85 -

Figures 5-6(a) and 5-6(b): A task subgraph and
corresponding expansion.

picnts, or multiple times to service groups of recipients. Figures 5-7(a) and : 7(b) illustrate
the transformation of the task subset to accomodate the limitation in the underlying
specification that a node can only engage in one communication at a time. This transforma-
tion is done by cnumerating the possible orderings of communication subtasks and then
adding precedence links to reflect each order. The ordering choices *‘c, before ¢3’’ or ‘¢,
before ¢, represent two possible permutations on the task subgraph. In figures 5-7(a) and
5-7(b) the communication subtask ¢, is shown as representing a simultaneous broadcast to v,
and v,. This subtask can be replicated to represent the optional servicing orders of the reci-
pients of the broadcast. Figures 5-7(a) through 5-7(f) enumerate all of the possible sending
orders in the subgraph. Notice that figures 5-7(a), 5-7(c) and 5-7(¢) represent the same ord-
cring of ¢, and ¢, but cnumerate the altemnative orderings of ¢, since there arc three possi-
ble orderings of ¢4 there are six sending permutations on the subgraph. Notice that in
figures 5-7(¢) through 5-7(f) the communicaton cy is sent twice. Since the subtask is

repeated, an additional node ¢’y is added to the task graph.

- 86 -
Figures 5-7(a) through 5-7(f): A subgraph with different
communication subtask orderings

- 87 -

Once the sending permutations have been cstablished, the receciving permutations can
be enumcrated. For the task subgraph in figure 5-6(b), there are four recciving permutations. -
These can cach interact with the six sending permutations so that for this small subgraph,
there are 24 possible orderings. Before the recciving orderings are derived, the subgraph is
rcdrawn 1o isolatc each of the subtasks by a null node. This allows precedences to be
changed more casily and facilitates the comparison of subgraphs with different precedence
orderings. The receiving orderings impose a precedence on the communication subtasks that
merge 1o a particular node. Figures 5-8(a) through 5-8(d) show the four receiving permuta-
tions applied to the sending orderings of figure 5-7(a).* Notice that in all of these figures, ¢,
precedes c,, as it does in figure 5-7(a), but the communications into v, are ordered so that
communications subtask ¢, < c».” Likewise, in figure S-8(a) the communications into v, are
ordered so that ca. < ¢, The representation is logical, with respect to the ordering of com-
munication tasks, but the destination of communication subtasks are no longer derivable by
inspection. This is because the notation from which this graph originated used directed links
to represent the communication subtask and the precedence of that task, with the implicit
understanding that the successor subtask was the destination. In figure 5-8(a), for example,
the subtask of ¢; has multiple immediate destinations, none of which are vj, the processing
subtask to which it communicates data. The destinations must be given in the communica-

tion subtask attribute lists.

5.2.2. Deadlock Detection

Once the receiving orderings have been enumerated, the transformed subgraphs can be
used to extract information about the combination of the sending and receiving orderings. In

particular, the presence of deadlocks can be detected by graph cycle detection methods.

* The remaining 20 permutations are not shown.

* The operator *'<"" indicates a precedence relationship: @ < b indicates that @ precedes b.

-88 -

Figures 5-8(a) through 5-8(d): Four receiving permutations
applied to the sending ordering of 5-7(a).

-89 .

Consider figure 5-8(a). The precedence list can be created: vy =vy<cy<cy<c3<vy= vy,
where the symbol = indicates an equivalent precedence. In figure 5-8(c) there is a deadlock: -
cy precedes ¢y This can be scen by tracing the graph from ¢, to ¢, and then to ¢4 which
then loops back to ¢, An explanation of the above deadlock is as follows. The broadcast ¢4
is used as the first communication to vy, but is also used as the second communication to c,.
A precedence list would show that ¢5 < ¢, in order to initiate v, and ¢, < ¢3 in order to ini-
tiate v4. This transitively implies that ¢, < ¢;, and that can not be the case because the origi-
nal sending order imposed the restriction that ¢ < ¢,

An inspection of the dcadlocked subgraph in figure 5-8(c) shows that a cycle has been
crecated. Deadlocks caused by a panticular choice of sending and receiving orderings can be
detected by looking for cycles in the transformed subgraph. This fulfills one of the objec-
tives of static analysis: enumerate the link orderings and, along the way, eliminate those
which are not plausible. The methodology is fairly straightforward, as graph cycle detection
algonithms arc well known and can be applied directly to a transformed graph.6 The graphs
themselves will not be large; graph ordering transformations increase the number of nodes in

the task graph by about a factor of four, depending on the number of communication links

and the grouping of those links.

There may be a large number of ordering permutations for cach graph. Inspecting for
cycles in each graph is easy and gencrating each graph is simple and quick. Generating all
of the graphs may take a long time, but this up-front deadlock analysis can be set up and run
overnight. In the context of a larger objective, it is important to remember that the link ord-
ering information can be critical to making scheduling scheduling decisions. Task graphs
which have only a small number of feasible orderings or which require that broadcasts to

multiple rcceivers be broken up to prevent deadlocks may impose unintuitive resource

% An example is a topological sorting algorithm presented in [Knut68).

- 90 .

Figure 3-9: A nonconflicting subtask order which
reduces communication time to 2 units.

requirements. Moreover they may fail on certain static priority lists or do poorly when the
dcadlock problems conflict with subtask ordering heuristics. For example, in the above task
subgraph, it may be desirable maximize the concurrency of communication by ordering sub-
tasks so that ¢, and/or ¢, can occur at the same time as c¢,. If the communication time of
the thrce communication subtasks is equal, say 1 time unit for each communication, there
may be a particular sending order which allows all three tasks to proceed in twr time units.
Because of architectural considerations, it can be shown that this is only possible if ¢4 is sent
twice; if the bandwidth is available, this may be desirable. By cnumcrating all of the sub-

task orders, some nonconflicting orderings may be found that reduce the communication time

.91 -

to 2 units. Figure 5-9 illustrates such an ordering. This ordering uscs the sending priorities
of figure 5-8(c) combined with the the receiving priorities of figure 5-8(b). This result is -
unituitive—sending somcthing twice which need only be scnt once actually reduces the

overall latency—and demonstrates the utility of static analysis.

5.2.3. Latency Determination

Given a graph that has been fully ordercd, the latency can determined. The latency of
an ordercd graph is a mecasure of the longest exccution path through the graph. Finding the
latency of a particular graph is an end in itself and a means to other ends. Graphs with
different subtask orderings can be compared to find ones which minimize the latency. The
above goal may be modified by subjecting extraneous constraints such as allocation con-
straints. As a means to other ends, the latency is needed to compute the resource utilization
of a graph that is executing in a class one allocation environment. An intuitive explanation
of this is as follows. It is desirable to study the behavior of a pipeline once the pipeline

‘*fills up.”’ The longest execution path latency indicates, in part, when the pipe has filled up.

Extracting the latency of a directed task graph is a straightforward procedure that relies
on the dcfinition of a starting and ending point from which to compute path lengths through
the graph. In the general case there will be many sources and sinks in the graph. This
makes it a bit difficult to define latency: where is a task initiated and where does it complete
execution? The assumption has been made that all sources will produce initiations at the
same rate. With a single source graph, that source can be thought of as initiating the entire
task set at a fixed rate. This results in the highest-precedence subtasks being executed.
With a multiple sources graph, each source initiates a subset of the highest-precedence sub-
tasks. As a representation convenience, multiple sources can be considered to stem from a

single virtual source which distributes the initiation responsibility to these multiple sources.

The representation works if there is a logical onc-to-one relationship between initiations on
cach of the sources. A similar technique can be applied to sinks. Multiple sinks which -
share a onc-to-one firing can be joined to a virtual sink which represents the completion of
all execution streams in the task. The streams do not have to complete at the same time for
this representation to work: the virtual sink will be *‘activated’’ when the last sink is

tinished.

The latency calculation relies on this virtual-source-to-virtual-sink definition. For a
given graph there may be a number of paths from the virtual source to the virual sink.
Given a class one cxccution allocation in which this graph directly defines an execution
schedule, and assuming that all of the processing and communication times are known, the
graph latency is simply the time it takes for the longest path to complete and will correspond
dirccily to the execution latency. If the allocation is class two, this latency will be the
minimum execution latency. That is, a class two execution environment must still obey the

execution order of the task graph and can not decrease the latency of of the longest path.

A simple method of calculating the latency is to enumerate all of the paths from virtual
source to sink and then add up the execution costs along each path. This method may or
may not bc impractical, depending on the rigorousness of the analysis. If the architect is
going to go through the trouble of enumerating each possible graph permutation, then com-
puting distances along each path in each specific graph is not a lot of additional work.
However, since the number of paths in a particular subgraph pales in comparison to the
number of graph permutations that are possible given the number of communications subtask
orderings in the original graph, it is useful to limit the amount of computation that must be

performed on each graph.

A linear programming technique was developed to efficiently compute graph latency.

It treats the directed graph as a maximum cost critical path problem. Each directed edge is

described by its source, destination and weight. The simplex method is used by setting up a
simplex tableau in a edge-onented approach. For cach edge, a *'+1'" is placed in the con- -
straint row corresponding to the node from which the edge cmanates and a *‘~1'" is placed
in the constraint row corresponding to the destination node. Since each column corresponds
to a unique branch, it will contain exactly one ‘‘+1'" (source) and one ‘‘—1"" (destination).
The sum of all of the constraints will be zcro, implying that the rows are lincarly dependent.
This means that one constraint row can be eliminated: the virtual sink node is neglected. An
initial basic variable for each constraint can be chosen on inspection as the column in which
the first **+1"" occurs. Each constraint row will have a ‘‘+1'" since every node has an
emanating edge (the virual sink is eliminated). Each column has only one ‘‘+1'’ so the
basic vanables are distinct. A description of the simplex method can be found in [Hsia82].
The simplex method can then be applied over this tablecau and will yield a solution which

gives the cost along the critical path.

This method is useful not only for finding critical source-to-sink paths but for finding
intermediate node distances. A simple technique of adding large value links can be used to
trick the simplex method into finding distances between an arbitrary origin-destination pair.
All other path options are eliminated by inserting large value links between the origin and
the virtual sink and then the destination and the virtual sink. The path that will be chosen as
maximum will be one which encompasses these two nodes. The path length can then be
extracted. This techniciue will also detect if there is no path between the origin and destina-

tion.

An altemnative method of finding critical paths is a straightforward, recursive, depth-
first scarch technique to cnumecrate the paths through the graph and the subsequent length
computation on ecach path. This technique is useful for small graphs but may become

unwicldy for larger graphs, and may be difficult to apply to arbitrary paths within the graph.

.94 .

Figure 5-10: The task subgraph of 5-6(a) with attached
source and sink and its expansion to explicitly
represent communications subtasks.

An advantage is that the paths, as well as the lengths, can be extracted.

5.3. Example Analysis

Consider the task graph in figure 5-10. Notice that it is comprised of the task sub-
graph in figure 5-6(a) with a source attached to it. Subtask exccution times can be assigned
to each processing and communications subtask (table 5-1). Using the linear programming
technique described above, the latency for the task graph (assuming a class one execution
environment) can be found. This is done by first choosing the sending and receiving link
orders and then converting that expanded graph into a simplex tableau. Note that a source
has been attached to these subgraphs and that nodes v, and v, are sinks. Table 5-2 gives the
task latencies that correspond to the link orderings of figures 5-8(a) to 5-8(d) and figure 5-9,

which is a most-concurrent ordering. The latency for the most-concurrent case is not the

.95 .

minimal. This is a result of the particulars of the timing information supplied to this exam-
ple. If all communication and cxccution subtasks took cqually long to process then this -

would have been the minimal latency ordering.

The latency of a graph can be a useful calculation when considering a particular sct of
orderings or a single initiation of the graph. For a system with periodic task arivals,
though, latency is only onc characteristic of the task set. The task arrivals combine to yield
a demand for resources that is based on the demand imposed by a single task. This demand
can be found from an ordered task graph whose latency has been determined. Determining
the baseline resource demands imposed by a particular task is a reasonable objective of static
analysis. This objcctive can be met by refining the task description to incorporates the
periodic arrival of tasks and then using this description and the task latency to derive the
demands for resources. The peaks and averages in these (processor and communication)
resource demand profiles can then be used to generate minimal allocations needed for class

one or class two execution environments.

Algorithm (task) Information
Subtask | Subtask Type | Exccution Time
(usec)
vo Source 0
vy A 1100
vy B 1000
vy Sink 0
Vs Sink 0
Co Comm 100
¢y Comm S50
Cy Comm 30
Cy Comm 25

Table §-1: Task information for latency calculation cxample

A task with a perodic armmival rate can be represented by chaining individual task
graphs (figure S-11), where a delay inserted between cach graph gives the inter-arrival time. - -
This representation is made casicer if the graph has been transformed into one which has a

virtual source.

A profile of demands for each resource can be generated by first creating that profile
for a single task sct and then overlaying the profile onto itsclf. If the profile is examined

after the first latency, a periodic demand can » detected, the period being the interarrival

time. The proof of this is fairly simple. The demand profile of a single task can be con-
sidered as a discrete function d[n], which is valued in the range 2 =0 to n = N (the latency
is N). Assume that the intcrarrival time of the task is A, and A is a multiple of N, so that
m * A =N. If the function is replicated onto itself at n = A, n =24 ,... then a new function
g [n] can be described:

glnl=dln)+d[n-Al +d[n-2a] +,...

Al (or after) n = N, this function is pcriodic in A:

(1) g(N+r)=d[N+r)+d[N+r-Al +d{N+r-2a]+,.... +d[N+r-mA]
() gIN+r+A1=d[N+r+A] + d[N+r) + d[N+r-A] +,. .., +d[N+r-mA]

Latency Information

Link Ordering | Latency

(figure) (lLsec)

5-8(a) 1305

5-8(b) 1305
5-8(¢c) Deadlock

5-8(d) 1205

5-9 1280

Table 5-2: Latency information for latency calculation example

.97 -

(3 gIN+r+2A] =d[N+r+2A] + dIN+r+A] + d[N+r]| + d[N4r-A]+ ..., +d[N+r-md)

These expressions are equivalent for any r because dn] is zero for n > N. Pictorially this
periadicity can be shown by overlapping random sequences. In figure 5-12(a), a random
sequence is shown which is valued from n =0 10 n =20. This sequence, d(n] is added to
the sequence din-7}, din~14...., d[n—9). The resulting sequence is plotted in figure 5-
12(b). Note that the scquence is periodic after an initial pipe filling. Since the partial

sequences d[n—561, d[n-m*7] arc missing, the sequence tails off. This observation has been

Figure 5-11: The task graph of 5-10 with a delay
inserted between each arrival of that task.

-98 -

integrated into a program which derives the latency of the task and, given an interarrival

time of tasks, determines the demand for communication and processing resources. As an -

example, consider the example task graph shown in figure 5-13(a) and the associated task
information provided in table 5-3. The generation of the steady state period will be demon-
strated for two different link orderings. In the first ordering. the broadcast communication ¢,
will occur once and will have 12 simultancous recipients. The subsequent communications
¢, through ¢, will occur scrally to accomodate reception by the sink. In the second order-
ing. the broadcast ¢, will be repeated for each recipient: it will occur 12 times. The merging
communications will be serialized as above. Figure 5-13(b) shows the task graph expanded
to show the scrialized merging. A demand graph for processors and communication
resources is shown in figures S-14(a) and S-14(b). This represents resource utilization for a

single fining of the task. Demand profiles which corresponds to this task graph and an

Algorithm (task) Information

 Subtask | Subtask Tvpe | Exccution Time || Subtask | Subtask Tvpe | Execution Time

| vo Source 0 Co Comm 100
vy A 400) Comm 100
va A 400 Ca Comm 100
Vi A 400 3 Comm 100
vy A 400 Cq Comm 100
v A 400 Cs Comm 100
Ve A 400 Ce Comm 100
Ve A 400 €q Comm 100
Vg A 400 Cy Comm 100
Vg A 400 Cy Comm 100
Vio A 400 Clo Comm 100
Vi A 400 cy Comm 100
Viz A 400 Cyz Comm 100
Vi Sink 0 3 Comm 100

Table 5-3: Subtask information for demand profile
generation example.

-99 .

Sum of sequence d[n}+d[n-7}+...

CLECOCEELETERECOCECEERLADCENCLEELLEDRLCLALELOLELD

0 20 40 60 80

latency = 20 n

sequence repeats
atn=19, 26, 33, ...

O‘Fj v 1] L 1] L] 1 |] [| LI

0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80

latency = 20 n

Figures 5-12(a) and 5-12(b): A random sequence valued
up to n = 20 and its overlappingat n = 7, n = 14, ...

- 100 -

®» ©

b

;

O 6066 6 ®6

(8]

Figures 5-13(a) through 5-13(c): An example task graph
with three link orderings. In fig. 5-13(c), the demand
graph was transformed to serialize the initial broadcast.

I

c2

c3

c4

() s
() 7
() c8
()
() et
O fen
() 2

- 101 -

Single Demand Profile for Processor A
15 N

Processor A

10 20
Time

Single Demand Profile for Communication
1

Communication channels

Time

Figures 5-14(a) and 5-14(b): Demand graphs for processor
and communication resources for a single firing of the
task graph in §-13(b).

interarrival time of 600 units arc shown in figures 5-14(c) and 5-14(d). Note that the single
broadcast to 12 processors of type A means that there is an instantancous demand for these -
12 processors: the peak demand is 12 while the average demand is about 8. The peak com-
munications demand, though, is fairly low and is ncar the average demand. How can this
graph be modified to reduce these peak demands? One option is to stagger the demand for
processors by initiating only one processor execution at a time. Figure 5-13(c) shows a
transformation of the demand graph in which the broadcast is repeated for each processing
node. The single-finng demand profiles for this arrangement are shown in figures 5-15(a)
and 5-15(b) and the steady state demand, once the pipe has filled up, is shown in figures S-
15(c) and 5-15(d). The peak demand for processors is now cqual to the average demand (8)

but the consequence is that additional communications resources must be utilized to repeat

the broadcasts.”

5.4. Conclusion

This example provided several insights into the utility of thesc techniques, as well as
the limitatons. The demand profiles will yield the minimal allocation of resources under
any execution environment. This can be used as a baseline for allocations. The comparison
of peak versus average demand give an indication of the extent of buffering that will be
required in a class two execution environment. Finally, the effects of graph enumeration
parameters can be explored in terms of the change in the synchronization of resource
demands. If a task graph with large variations in resource demands can be converted into
one with fairly stable demands, a class one execution environment may be fcasible. Further-

more, systematic queueing is reduced.

7 An alienate solution is to insert delays so that the processor demand profile remains the same but the
communications demand is reduced. This technique, akin to the delay insertion method used for pipeline proces-
sor scheduling, will be explored later.

- 103 -

Demand Profile for Processor A

15 +
<
o
7]
[7:]
[}
(3]
e 4
& 10
5-
1
|
0..
0o 1t 2 3 4 5 6 7 8 9 10 11
Demand Profile for Communications
[,
K]
<
[=
[y]
£
O
[
o
]
(3]
=
2
€
13
[<]
o

0 1+ 2 3 4 5 6 7 8 9 10 M1

Figures 5-14(c) and 5-14(d): Demand profiles for the
task graph in 5-13(b) with an inter-arrival time
of 600 units.

Time

Time

- 104 -

Single Demand Profile for Processor A

<
§ 272727727
8 | '
4
[+
Single Demand Profile for Communication
3 -
(2]
°
[=4
: -
«Q
[=
o
c 24
0
©
(3
€
E
g 1
Q
o
0
0 10 20

Time

Figures 5-15(a) and 5-15(b): The processor and
communications demand graphs for a single firing
of the task in 5-13(c).

Demand Profile for Processor A

Processor A

0 1+ 2 3 4 5 6 7 8 9 10 11
Time

Demand Profile for Communications

Communication Channels

J

Time

01t 2 3 4 5 6 7 8 9 1011

Figures 5-15(c) and 5-15(d): The processor and
communications demand graphs for the task in
5-13(c) with an inter-arrival time of 600 units.

- 106 -

The main limitation of this analysis technique is that it is very difficult to incorporate
allocation and detailed architectural information into the model. The techniques that have -
been described become difficult to implement when the number of graph variables grow. In
addition, the essential technique is bascd on manipulations of the task, not the architecture.
A ‘“‘supply-side’” view is hard to obtain and integrate; cocrcing the task graph to fit a
specified allocation is possible but the resulting transformation is not periodic. If the prob-
lem is not pcriodic, or if its period can not be easily determined, simple task replication

techniques can not apply.

This method, then, is limited in its ability to take architectural assumptions into account
because of the growing dimensions of the problem. Furthermore, static analysis of the task
graph is limited by the underlying representation and periodicity constraints in its extensibil-

ity to general allocation problems.

CHAPTER 6

State Generation

Supposc that a given task has all of its timing rcquirements specified. How can that
task be mapped onto a sct of resources? As we saw in the previous chapter, some estima-
tion of the number of resources required—both processors and communication channels—
can be made by looking at the peaks and average of the the resource demand profiles. If an
allocation was made which met the peaks in the demand profiles then the task graph could
be considered an execution schedule for that allocation and a direct mapping could be made.
There would be no buffering of subtasks and the latency of the graph would equal the
latency of the implemented system. Nothing was said about the ability of that system to
execute the task if an allocation was made that was at or above the average resource
demands in the graph. It was implied that the system would have to queue up tasks to
flatten the peaks of the demand graph, and some systematic methods of effecting that flatten-
ing were investigated. These involved changing the demand graph to find a subtask ordering
which had flatter profiles. If none of those ordering attempts reached a suitable solution then
queuing techniques which buffer tasks to accomodate contention for resources would have to
be employed. The allocation would then create a class two execution environment in which

subtask queueing occurs.

This chapter contains an investigation of the process of mapping subtasks in a class
two allocation environment. An example is given which shows a state representation of the
exccution of a task (or scries of task arrivals) onto a set of processors. That example is
expanded to show the complexities of the mapping representation when delays are intro-

duced to flatten the demand profile. The example will illustrate state diagrams that were

- 107 -

—

- 108 -

derived manually. Once the reader has been introduced to the difficulties of gencrating state
diagrams that represent the states of the mapping process in a class-two environment, the -

process of finding and evaluating delay lists will be introduced.

A state diagram representation is chosen to describe subtask mapping in a class two
environment. State gencration provides a means of representing the mapping in a class two
environment and gives a sense of how subtask dclaying approaches work. Furthermore, it
iltustrates the complexity of both the problem representation and the subsequent search for
delay approaches. The number of states which are required to describe the assigning of sub-
tasks in a class one cnvironment is very large, but state representation of mapping in this
cnvironment is not necessary because by definition, the directed graph accurately describes
the scheduling of those tasks: the state representation is trivial. The number of states which
are required to describe the assigning of subtasks in a class two environment is cven larger.
The significance of this is that the size of the representation reflects the difficulty of manipu-
lating and extracting information from the state diagrams. Consequently, it is difficult to
find a particular subtask delaying approach which meets a specified set of allocation, perfor-

mance, and mapping critenia.

By choosing a state diagram representation, individual subtask mappings can be not
only cnumerated, but altemate mappings can be generated. A procedure which automatically
generates subtask mapping state diagrams will be described. This procedure can enumerate
all of the delaying altematives and generate a field of schedules. That field can then be
explored by looking for cycles in the state diagram; these indicate execution schedules in
much the same way that cycles in pipeline latency sequences indicate plausible control stra-
tcgies. Theoretically, an schedule which meets performance criteria (latency and stability)
could be chosen from this ficld. The problem is that the approach fails on extensibility.

This automated technique does not scale to problems with large task graphs, large

- 109 -

allocations, and tine timing granulartics. And cven if it could, it would not be extensible to
problems which are less completely defined and which include more assumptions about the -
underlying architecture. It will be shown that the number of states that need 1o be evaluated
is explosive and grows along many dimensions. Somc of these dimensions are critical, such
as the number and composition of resources that are being allocated, and some of the dimen-
sions are arbitrary, such as the exccution time of subtasks. Because of this state explosion,
the technique is more demonstrative than it is applicable. In that sense, this chapter sets up
a paper tiger and then slays it. The purpose in doing this is that explaining the infeasibility
of solution-by-enumeration techniques justifies heuristic-based solutions and simulation-based

analysis methodologies.

6.1. State Diagram Representaton

The process of state diagram representation and generation will be explained via a sim-
ple cxample. Figure 6-1 shows a directed task graph. The ‘‘source,’’ graph node v, is also
the first subtask; we'll call this subtask A. It executes and then initiates communications

subtask ¢,, which is a broadcast to subtasks v, and v,. They are initiated and eventually

c1 C1
c2 c3

Figure 6-1: A directed task graph.

- 110 -

send information, via subtasks ¢, and ¢4, 10 subtask v, we'll call v, subtask B. The task
graph can be broken into separate graphs for cach | .cessor type (fig. 6-2). This decoupling -
will aid in reducing the number of extrancous variables in the representaiton. Unfortunately,
as will be dcmonstralcd.lalcr, the different-typed subtasks are related via graph precedences
so that changes 1o one graph affect all other graphs. Consider the task graph for processor
npe X (fig. 6-2(). There is an arrival of tasks every two time units and for each arrival a
demand for processors for three units followed by five units of delay in which subtasks of
other types are exccuting and subsequently a demand for three more units of processing.
This demand graph can be redrawn in a directed task graph form (fig. 6-3(a)) or in a gantt
chart form (fig. 6-3(b)). The gantt chart shows the demand for processors in terms of lines
proportional in length to the demand timing that they represent. Notice that the demand
eraph has a repetitive scgment whose length is proportional to the interarrival time. Each
column represents a new arrival and the arrivals are staggered by two time units (each row
represents a time unit) to show the interarmival time of tasks. The peak and average
demands for processors can be viewed by scanning across rows of the task graph and count-
ing entries in each row. In this example, the peak demand is for 4 processors but the aver-
age demand is 3. This becomes more evident in a demand profile for this resource (fig. 6-
4). If we wanted 1o map this demand graph onto an architecture with four processors of
type X—a class one allocation—we could do so by assigning awaiting subtasks onto await-
ing processors in a round-robin fashion. A state diagram which represents this assignment is
shown in figurc 6-S. The individual processors have scven states, described in table 6-1.
Since there are four processors and seven states, there are 47 possible states of the system.!
However, since this allocation is class one, the system will reach a periodicity at or after the

latency of the task—the 11th time unit—and the steady initiation period will be the

! For this simple example, if there are p processors and s states per processor, the number of global states
is 5P
is s

- 111 -

(interarrival time = 2 units)

Subtask "A"
(3 time units)

@ (3 time units)

v2
v (X time units)

(5 time units)

Subtask "B"
(3 time units)

@ (1 time unit)
@ (3 time units)

@ (0.5 time units)

(0.5 time units)

Figure 6-2: Partial task graphs for subtasks processor
types X and Y and communication subtasks.

- 112 -

(interarrival time = 2)

Arrivals —_—

: time (units) '
Subtask "A" Execution States

at
I a2
a3

v b1

: :l:bz
L b3

Subtask "B"

Figures 6-3(a) and 6-3(b): Directed task graph and gantt chart
notation for the partial directed task graph of 6-2(a).

- 113 -

| State | Description

0 Not processing
a; Processing first third of subtask A
ds Processing last third of subtask A

by Processing first third of subtask B
b,y Processing second third of subtask 8

5

I

l

l a, Processing sccond third of subtask A
l

t b Processing last third of subtask B

Table 6-1: Description of states for example task graph.

intcrarrival time. Not all 47 states will be visited. In figure 6-5, the first state (state 0)
represents all processors idle. State 1 represents the assignment of subtask A onto processor
1. State 11 represents processor 1 completing subtask B, processor 2 starting subtask B, pro-

cessor 3 completing sublask A and processor 4 starting subtask A. This is the last state in

Demand for Type "X" Processors _ (steady state)

Demand
o
1

 Oemad

012345678 9101112131415
Time (units)

Figure 6-4: A demand profile for the partial task graph in 6-2(a).

<113 -

the first initiation of the task. Every two states subsequent show an identical initiation of

subtasks, i.c. statc 11 contains the same subtask segments as statc 13 and state 12 contains -

the samc segments as state 14, While the location of these segments-—which processor

(represented by the column position) they happen to be initiated on—varics, the initiations
are the same. A cycle which repetitively generates these segments will be called an *‘initia-
tion cycle.”” The salient system state is then the list of subtask segments, as opposed to an

ordered list. A “‘mapping cycle™ represents the same segments being operated on by the

same processors. For this cycle, the the column-location of the subtask segments must be
prescrved—the systemn state is then represented by an ordered list of subtask segments.

State 14, is the beginning of such a cycle: the segment list is: a,, 0, b2, 0. The cycle runs to

state number state

0 0 0 0 O

; :12 g 8 8 Execution States
3 a3 at 0 O at

all o a0 0 :':;,2

5 || o a3ato ’3

6 0 0 a2 o

7 0 0 a3 at 0

8 0 0 0 a2

9 b1 0 at a3 b1

10 b2 0 a2 0 2
initiation 11 b3 bt a3 at b3

sequence 12 0 b20 a2

13 al b3 b1l a3
—P 14 a2 0 b2 0
mapping 15|| a3 b1 b3 al
sequence 16|} 0 b2 0 a2
— 17 al b3 b1 a3

Figure 6-5: A state diagram representation of the round-robin
assignment of the demand graph of 6-2(a) onto a collection of
four type X processors.

- 115 -

state 17; state 18 will be identical to state 14. This type of cycle represents the subtask map-
ping from a processor point of view in that the states represent what each processors hap- -
pens o be doing at cach stage as well as what subtasks are being processed. The period of
the mapping cycle is longer than the initiation cycle period because the interarrival time is
shorter than the longest execution time of one of the subtasks. It would not be possible to
represent the continuous execution of subtasks which require 3 time units on a unique pro-
cessor in the space of a period of 2 time units. The period of the mapping cycle for a
class-one allocation, then, is at Icast as long as the longest subtask time and is a multiple of

the interarnval time.

This task graph could be mapped onto a system of three processors if we can find a
way of buffering the peak in demand in such a way that the peak is reduced to the allocated
number of processors. Since, in this example, the average demand is three, the peak demand
will be reduced to three. Since we are not reducing overall demand, the valley in demand
must be increased to three. The buffering is performed in the following manner. At each
time unit, subtasks that have alrcady becn assigned continue to execute. The number of new
subtasks that nced assigning is compared to the number of available resources. If there is a
conflict then the buffering procedure that is being uniformly applied is used to choose the
subtasks to buffer. It tums out that for this example there are several plausible procedures to
ouffer new tasks; two of them will be illustrated. The first is shown in figure 6-6(a). In this
procedure, a conflict arises at the 11th timestep. Subtask B of amrival 1 and subtask A of
arrival 5 are awaiting initiation but there are two subtasks already being executed. The
conflict is resolved by delaying the later armiving subtask. This rule is continually applied
whenever there is a conflict. Note that when a subtask is delayed, its successors are also
delayed. In this example, this means that if subtask A is delayed by one time unit then sub-

task B must also be delayed. Note that while the resulting gantt chart has a periodicity to it,

| - 116 -

Arnvals ——————%

Time (units)
Subtask "A*
S_ptask "B” W Subask
execuling
.
.
- Delay

-4-

Figure 6-6(a): A gantt chart representation of the subtask
scheduling under the first buffering procedure.

the initiation cycle period is no longer equal to the interarrival time. After the pipe filled,
there was a conflict for resources and new arrivals were queued. The queueing was no
longer needed after four arrivals, but demand resynchronized four amivals hence. The
interaction between new and old tasks both competing for a common pool of resources. If
we examine a state diagram of this mapping we can see that additional states are needed to
model the queueing of a subtask at a particular processor. The simplest representation

would require 3% states. Each processor can be processing a subtask (4 possible states) or

- 117 -

could have a subtask awaiting cxecution. The description of the queucing can be limited to
two states—cither a subtask is waiting in a qucue or it isn’t. In general, though, a complete -
description of the qucucing would require more specificity: what subtasks are waiting and

how long have they been waiting?

An alternate way of cffecting the delaying is to delay subtask B whenever a conflict
arises (ficure 6-6(b)). The gantt chart for this technique shows that its penodicity is much
smaller, though the tasks are always delaved by one unit. What is interesting about this
delaving is that it neatly solves the problem of clipping the peak demand while creating no
downstream conflicts. An inspection of the gantt chart reveals that the subtask executions
have a stcady pattern with a periodicity equal to the interarrival time. This pattem is the ini-
tiation cycle (fig. 6-6(c)). Notice that this pattemn can be shifted by 1 arrival every two time
units and the entire gantt chart in figure 6-6(b) can be generated. The interpretaton of this
can be seen if cach of the six components in the sequence are explained. The task can be
divided into 6 execution scgments—one for each time unit of execution of the task which
has had the subtask B delayed by one unit. The initiation sequence is comprised of these 6
segments sprcad over 6 task arrivals. That is, at each step, three of these segments for three
of six arrivals is ‘‘processed.’”’ Because of the judicious use of delays, half of these seg-
ments are non-executing segments so the subtasks can be cleanly mapped onto three proces-
sors. The actual mapping state diagram takes longer than two time units because the assign-
ing of subtasks to processors is performed in such a way as to prevent subtasks from having
to “‘jump around’’ from processor to processor. As with the class one allocation case (four
processors allocated), the state diagram cycles at some multiple of the length of the longest

subtask and task interarrival time.

This example has demonstratcd a few important points. With a gantt chart representa-

tion, we can identify a cycle of task initiators which corresponds to the portions of subtasks

- 118 -

Arnvais —————————

% Time (units)
——]
Sublask "A”
B Subtask executing
& Delay
bt
Subtask "A”
v

ju |
1

a3
4 -l B

intiation Sequence

pw

-} 4.1
H1

1
11

Figure 6-6(b): A gantt chart representation of the subtask
scheduling under an aiternate buffering procedure.

which require execution at each time unit. These initiators have a periodicity which is equal
to the interarrival time for class one allocation environments but their periodicity is distorted
in the presence of delays. In addition, their periodicity is a fraction of the periodicity of the
mapping state diagram because this diagram encompasscs the assignment of those subtask
portions. The mapping period is longer because it must demonstrate that subtasks are fully
executed on single processors. If the underlying architecture provided cost-free subtask
preemption and migration (something not very commonplace), then some subtask A could
begin execution on processor p;, Move over L0 proccssor p,, and finish up on processor ps.
At the same time, a sccond subtask B could begin exccution on proccssor p,, move over o

processor p,, and finish up on processor p,. In this case, an assigment could be performed

—> b3 a2 a a2 83 a1
b1 a3 a2 al by a2
t2 a1 al al b2 a3
~1aten 513 a‘;’ g; a§ £3 5
i at a al ar b2
FRLENCEl 32 b1 B3 b1 a2 03 | oo 2 :§
a3 b2 a1 e2 a3 at B2 a3 al (\
bt 53 a2 E3 bt a2 | 13 py a2
b2 b1 a3 b1 B2 al al b2 a3
53 b2 a1 52 b3 at | 33 p3ps a1 a2 b3
b1 03 a2 83 01 a2 | L3 a1 b2 a2 a3 b1
b2 a1 a3 a1 82 a3 | py a2 b3 a3 at b2 (mapping
3 a2 a a2 13 al | g5 31pt b1 a2 83 | sequence)
at a3 a2 a3 a1 a2 | o3 212 b2 a3 a1
a2 o1 a3 b1 a2 a3 | p) 22p3 b3 o1 a2
—— 23 b2 at £2 a3 al | o a3 a a1 02 a3
31! 583 22 B3 al a2 a2 bI o
\j al a2al a3 o1 b2
\J at b2 b3
a2 al ol
a3 at b2 a2 b3 o
al at b2
\J aan
32 a3 at
al bt a2
at b2 al

Figure 6-6(c): A state diagram of the mapping of subtasks
to particular processors, demonstrating an initiation
and a mapping cycle.

in the space of the initiation sequence and the mapping and initiation periods would be
identical. Finally, while subtask dclaying is necessary to flatten peaks in demand, it is not
always possible to find delaying techniques which do so without imposing a cost on system
performance. In this example, two approaches were shown. The first increased latency by
onc time unit for half of the tasks and the second always increased latency by one time unit.

The first had a more complex initiation sequence associated with it and therefore required a

-120 -

larger number of states to minimally represent the mapping of subtasks onto processors.
The first delaying approach resulted in tasks being processed with a lower average latency -
but was less stable and possibly harder to implement because of the nonconstant application
of dclays. The second delaying approach—always delay subtask 8-—might be easier to

implement but resulted in a higher average latency.

6.2. State Generation

The previous example demonstrated how a state-diagram notation could be used to
describe the initiation and mapping cycles. The initiation cycle was a repetitive sequence of
subtask initiations which described when particular subtasks were initiated and, implicitly,
when they were delayed. The mapping cycle encompassed the initiation cycle but also
showed where those subtasks were processed, i.e. it encompassed both task and processor
states. It was shown that the period of the mapping cycle was dependent on the period of

the initiation cycle, the interarrival time, and the time of the longest subtask.

The state diagram notation is useful not only for describing these cycles, but generating
them as well. Consider the task graph in figure 6-2(a) and its gantt chan representation. In
the previous example, two different delaying rules were used to generate the resulting map-
pings of the task set onto a class two allocation. The first rule could be summarized as:
‘*delay new arrivals whenever there is a conflict.”” The sccond rule could be summarized as:
**delay subtask B whenever there is a conflict.”” From a procedural point of view, in both of
them, an allocation was decided upon and a delaying rule was chosen. As explained in the
example, there are an infinity of delaying procedures that can be applied, some are based on
regularly applicd heuristics and some based on specific delay lists. Delay rules based on
heuristics could read: ‘‘dclay all new tasks whenever there is a conflict’’ or, more generally,

“‘whenever there is a conflict, delay the ath subtask belonging to arrival which is m arrivals

old.”” These procedures generate repetitive delay lists. Specific delay lists are lists of sub-
tasks to delay at particular times or situations and may not follow a particular pattern. One -
of these lists could read: “*Delay subtask A/arrival ¢ at time x; delay subtask B/arrival m at
time y; delay subtask C/arrival a at time z.”" These arbitrary delay lists are as viable as
heuristic-based delay rules in that they address the same problem of holding over peaks in
demand to allow a class two allocaton but they are harder to investigate and may be harder
to implcment. Despite the forsecable implementation difficultics, the existence of these
specific delay lists is noted because the domain of delay sequence candidates must be

broadened to include any arbitrary, workable sequence.

The problem of finding delay sequences is, then, expanded. We must now consider
any arbitrary sequence that fulfills the objective of buffering demand. A procedure for
suboptimally choosing a dclay sequence would be to consider a couple of heuristic-based
sequences (because they are casy to generate and evaluate) and then choose the one which
best meets certain performance objectives. This procedure yiclds suboptimal solutions
because (a) the choices are being made from a subset of the possibilties and (b) there is no
way to show that the optimal solution always resides in that subset. A procedure for
optimally finding a suitable sequence could be: enumerate all of the delay-ordering possibili-
tiecs and then selcct the sequence that best fits the performance objectives. “‘Optimal,”” in
this sense, implies making the best choice from the entire domain of possibilities. A few
questions then arise. For the gencral problem of mapping a predetermined task set of known
arrivals, is it possible to optimally sclect a delaying scheme? If so, what is the usefulness of
the optimal sequences? And how do we rclate optimal solutions formed over one resource
type to a possibly conflicting optimal solution formed over another resource type? The
remainder of this chapter investigates these questions by outlining and then discussing a pro-

cedure for enumerating the possible delay lists.

Assume that, as in the example task graph in figure 6-2(a), the task timing and alloca-

tion have been tully specified. The mapping of tasks onto processors can be performed in a -

step-by-step manner. When a mapping conflict occurs—when the instantancous demand for

resources is greater than the instantancous supply—instcad of applying a particular delaying

rule, all altematives are explored. This creates of branches in the state diagram. Each of

these branches is independently investigated.

Along cach branch, when a conflict arises, it is

handled by generating all possible subtask delay alternatives which push back the conflict

(fig. 6-7). When some state X is gencrated, the paths leading back from X to the root of the

state diagram arc investigated to see if the state has alrcady been generated. If it does, the

path leading to X is terminated by connecting the states prior to the newly generated state X

to the previously gencrated state X. This forms a loop in the state diagram. This represents

a cycle in the state diagram from which a

repeating sequence of delays can be extracted.

ad 2
a2 2 0
a3 av 3
0 a2 o
0 al at
0 0 a2
at 0 al
a2 0 o
al at b1
0 a2 b2
at a3 a3 bt a3 B3
a2 bro
4 a3 b2 b
/__A_LALAA——. al b3 b2 ———p
ot 53 a2 a2 atl b3 az bt b3
%> :)1‘33/’ b2 a1 ald /a.‘! a2 b1 a3 b2 a1
al bl a2
al a2 at g; 23 :§
b3 a2 b b3 a2
bl a3 a2
b2 bt a3 b2 a1 a3l
‘___/ b3 b2 al
b3 a2 o at b3 a2
at a3 b2

Figure 6-7: A schedule generation by state enumeration
along each branch.

Each path in the state diagram will eventually terminate by looping backward. It will no
longer be necessary to generate states after a loop because the subsequent states will be
cquivalent to those up the tree. Once the state diagram has been generated, a delay sequence
can be chosen. In a manner akin to control strategy generation, delay sequences can be sim-
ple or complicated. Simple sequences involve paths through the graph that, in one cycle,
visit each state in the cycle only once. There are a finite number of these simple sequences.
Complex scquences involve paths that revisit states; there are an infinite number of these
schedules. That is, if there is no limit on the length of the period of the sequence, then the
period can be infinite. If there is an imposed limit on the periodicity of the sequence then the

sequences can all be enumerated.

The problem of cnumerating delay sequences has been demonstrasted in terms of
finding all possible cycles in @ mapping state diagram. Applying this technique is implausi-
ble because of the complexity of the underlying state description and the size of the resulting

cycle detection and evaluation problem.

The complexity of the state diagrams rests on the following parameters The number of
states of each subtask is equal to the execution time of the subtask divided by whatever the
smallest time increment is. An additional state for a subtasks is ‘‘not processing.’” If there
are M subtasks with a serialized execution time of N, then there will be N + M states of
execution for each processor. The allocation will yicld the number of processors that can
occupy one of these states. If there are P processors then there are P¥*M processing states
Delays introduce extra states in two ways. First, if a subtask is delayed by U units, then
there arc U additional states to that particular subtask. If there is no ceiling on the amount
that a subtask can be delayed, then there will be no ceiling on the number of states to
describe the status of the subtask. Onc would think that a reasonable ceiling would be the

cxecution time of that paticular subtask. That is, if a subtask takes twice as long to execute

as its stated cxecution time, then the delaying approach responsible for this situation is
flawed. Unfortunately, this overlooks some of the key synchronization issues of the task -
graph mapping. If a subtask is to be fired after a merging of links from short and long
paths, the subtask must be systematically delayed duning the difference in these paths. This
delay is a propenty of the task specification and not the allocation. Additional delays can be
attributed to the delaying approach. To create a delay ceiling that is meaningful, then, two
approaches can be used. The first is to set all ceilings to a large number, such as the antici-
pated latency of the entire task. In this case, if a delaying approach results in a particular
subtask being delayed for a rediculously long period of time, that delay approach will be
rcjected. The problem with this ceiling is that it may not reject all approaches that should be
rcjected. The sccond ceiling could be created by factoring out the path differences leading
to subtasks and then assigning subtask delay ceilings that are based on some standard delay
allowance plus some additional allowance to subtasks which do not lie along the critical exe-
cution path of the graph. The delay ceiling imposed on the subtask adds to the number of
possible states of that subtask. A final complication is that each processor may be currently
execcuting a subtask, so it may be in one of N + M execution states but the queued subtasks
must somehow be accounted for. The actual location of these subtasks is dependent on the
underlying architecture. If we make a simple assumption that all of the queued subtasks are
held in some bin, then the composition of that bin must be described. Complicating matters
is that any number of task arrivals may be in the system. I[f the number of amrivals in the
system is A and the sum of all of the allowed delays is D, then A * D states are required to
represent all of the delayed subtasks. To more completely describe the subtasks that proces-
SOrs are executing, cach processor now can be in one of A * (V¥ + M) states, so the number

of system states isnow A * D * pA° W+M)

- 125 -

Assuming that the state diagram for utilization and contention of each individual
resource could be generated, the enumeration of all simple delay sequences (cycles) is costly, -
cven if a lower bound on the frequency of the sequence is imposed. The enumeration of all
complex cycles is, obviously, impossible. If all allowed simple cycles are ¢cnumerated, the
optimal one could be found by inspecting the impact of each sequence on a variety of per-
formance metrics. [If sequence A is used, what will be the resulting latency of the task? If
sequence B is used, will the demand for resources be uniform or will it be very low except
for peaks right at the allocation level? Choosing the optimal sequence rests on the applica-

tion of an evaluation scoring to the candidate scquences.

The state gencration technique arose from a mcthod for determining latency schedules
for static and dynamic processor pipelines. The mapping of heterogeneous, dependent sub-
tasks onto a system of heterogencous processors is a fundamentally more complicated prob-
lem than the pipeline control strategy generation problem. In the pipeline problem, it is
assumed that all of the states can be enumerated. This assumption is partly based on the
simplification that subtasks (in this case subtasks are pipeline stages) all execute in one time
unit. Furthermore, for processor pipelines, each subtask must be mapped to a unique physi-
cal resource. Finally, the state generation procedure fails when timing information is either
not fully provided or if timing is not static; the techniques do not seem generalizable to

dynamic timing systems.

The goal of this chapter was to provide some justification for simulation and heuristic-
bascd analysis by presenting the unsuitabilty of a methodology that is successfully applied to
problems in simpler domains. The enumeration of mapping sequences tums out to be as
problematic as the enumeration of subtask orderings that was .demonstratcd in the chapter on
static analysis. The next two chapters will present analysis methods that provide information

that is more suitable to both the configurer and the architect.

CHAPTER 7

Schedule Simulation

An intermediate level of simulation models the assigning of subtasks onto a class two
atlocation of resources under the direction of delaying heuristics. The technique is motivated
by a desire to cxperiment with and evaluate a number of hcuristics for clipping peaks in
demand for rexources without having to determine an architecture and implementation stra-
tegy for cach of those heuristics. Some of the hecuristics may prove to be useful for some
task graphs but impossible to implement. Others may be casy to implement given an under-
lving architecture but unworkable for some task graphs. Both an architect and a configurer
would be interested in this level of simulation: an architect would want to evaluate an ever-
expanding number of heuristics and refinements under classes of tasks and allocations. A
configurer, working from an architecture with a predefined set of supportable heuristics,
would want to investigate how thesc alternatives applied to a specified task and set of alloca-

tion constraints.

The chapter is organized as follows. Notation is introduced which provides a way of
describing the resource requircments of subtasks and of relating their initiation times and
delays. This notation involves the use of discrete variables represent resource utilization.
Subtask initiation and precedence-based timings are incorporated by index-shifting. The
simulator itself is then described as a time-step-based evaluation of resource demand and
supply and a subsequent application of a specified delaying heuristic. After the simulator is
introduced, some delaying heuristics are presented, along with the motivation for studying
them. As an example of the extensibilitv of this simulator into more implementation-specific

arcas, two concems of the architecture specified in Appendix A arc introduced. These

- 126 -

scheduling concems are integrated into the scheduling simulator. Finally an example simula-
tion is presented to give the reader a feel for the uscfulness of this methodology and some -

results and conclusions are prescnted.

7.1. Representation by Sequences

A compact representation of the processing of a subtask is by discrete scquences. At
cach stage of cxccution a subtask requires some resources. The evaluation of a subtask
discrete variable will vield a value of 1 when that panticular subtask is utilizing a resource
(processing) and 0 when it is not. Consider the example graph in figure 7-1(a). A suituwole
discrete variable representation for subtask v,, which executes for 3 time units is

vilnl: w0 =1, w11 =1, v, 2} =1, v,[3]1 =0, v,[4] =0, --
A precisc explanation is that the valuc of the variable represents the processor-space required
by that subtask. Since we are dealing with subtasks which confine themselves to execution

on one type of processor and only onc processor at a time, this notation is suitable,

Figure 7-1(a): An example task graph.

- 128 -

Precedence relationships among the subtasks can be described by a precedence matrix
which aids in noting that successor subtasks arc initiated only after their parent subtasks are
cxccuted. In this notation, a subtask is considered to fire at some basic time plus the time
rcquired by all of its predecessors to firc. For example, if the task in figure 7-1(a) is ini-
tiated at time 0, subtask v, would fire immediately, but subtask v, would fire after vy, v,,
and vs, as well as after the communications subtasks ¢, ¢», and c¢,. Precedence information
can be used 1o find the longest exccution path to the subtask via the linear programming
method described in chapter 5. As explaineu in chapter 5, an altemate method is to calcu-
late and compare distances along all the paths trom the subtask back to the (virtual) source
and then choose the current longest path as that which contributes to the time-shifting of a
subtask initiation. Subtask v, would, in cffect, be delayed by its parent subtasks that lie on
the instantancous longest path. If we note the latency of each of the subtasks on this longest
path by L{v,] and L(c,] then given the longest path shown cmboldened in figure 7-1(b), v4
will be exccuted at time L{v.]-L [v,)+L (c,}+L [c4]. Another way of expressing this is that for

a single initiation, the utilization of processors by v, at any time n is given by:
f e
veln - (L{vi]+L{v4)+L{c]+L [co)+L [c,])]. More gencrally, the resource utilizaton of any

task v, is given by:

j=T =T
UTILIZATION = v, [n —ma;([b> L[v,]] - max[b3 L[c,]H.
pe €P |,

j=0v, € p PP |)=0c € p
where p is a set of subtasks on a path from the subtask v; to the virtual source and P
encompasscs all of the sets p. The notation provides an easy way of representing resource
utilization when a task graph is executed. If a subtask is initiated at time O and requires
resource type X, a measure of the resources required by that subtask at any time subsequent
to initiation can be retrieved by the discrete represcntation:

X-Required[n] = v,[nr).

Figure 7-1(b): A longest-path analysis of the task
graph in 7-1(a).

Since, in the example, both v, and v, utilize type X processors, a more complete description

would be:

=T =T
X-Required[n] = vy[n] + v, {n - ma;({ /Z L[v}]] - ma;([IZ L[c,]]],
pe pE ;

/=0.v}- €p =ﬂ,cj €p
where p is a sct of subtasks on a path from the subtask v, to the virtual source and P

cncompasses all of the sets p.

An exccution of a task graph with an interarrival time of /AT is rcally the instantiation

of all subtasks with stant times of 0, JAT, 2JAT, - - -. Each task arrival then has a start time

- 130 -

which is an indexed multiple of the interarmival time. A represcntation of the utilization of
processors by subtask v, across all initiations of the task would be:

X-Required[n] = v[n 0] + vi[a—~IAT] + v{[n-HAT) + - -
Generalizing one more step, since both v, and v, utilize type X processors, a complete

representation would be:

=T =T
X-Required[n] = viln] + v, [n - max [IZ L[v,]] - ma;({ IZ L[c,]”
J per

pepP v e p =0c, € p

/=0.cj €p

=T j=T
+ vy (n-lAT) + vy [n—IAT—-m:u[/Z L[v,]]—ma;([JZ L[cj]”
J pe

peP =0.\rJ €Ep

peP v, €p pef j0c; € p

=T =T
+ v (n=2AT] + v, {n—llAT - max [IZ L[v/]] - max [IZ L[c,-]”
;

Once the framework for representing subtasks is in place, it is easy to add delays o'
each subtask that are incurred because of competition for resources. Remember that this
competition is what chacterizes a class two allocation environment. The initiation of sub-
1asks can be dclayed as a result of buffering to reduce instantaneous demand for resources.
The above framework is uscful because the delay of a subtask is the sum of any delay
applied to it directly plus the delays applied to its predecessors. This delay-precedence rela-
tonship can be cleanly added into the representation. The delay incurred by subtask v;

which is initated as part of task arrival m is denoted D,[m). A subtask v, which is parnt of

inidation m executes at time 7.

=T j=T
A=n-D,[m]- max JZ L[v,]+D,j[m]]-max[IZ Llc;1+D; [m]|.
1=0.cjep

peP y=0v € p peP

7.2. Schedule Simulation

The above notation provides a convenient framework for manipulating and representing

start times and dclays of individual subtasks. The schedule simulator, structured around the

- 131 -

repeated evaluation of the resource-utilization equations, can track allocation supply and
demand. It is called a schedule simulator because its objective is to evaluate scheduling -
alternatives—heunstics that buffer demand and undcrlying initiation mechanisms—in the

presence of supply and demand parameters such as the task description and allocation.

The schedule simulator takes as input a description of the directed task graph similar to
that given to static analysis techniques. A specific ordering to subtasks must be specified
and some method of determining the execution time for cach subtask must be fully specified.
The simulator also receives a description of the resources that are available. This descrip-
tion, for now, is limited to specifying single typed resources. The reason for this is that it
simplifics describing two subtasks which present different requirements to the same resource
tvpe (modes). In addition, it allows the simulator to more easily describe changes in the
processing behavior of individual subtasks. The front end of the simulator performs the
graph expansion and transformations necessary to represent subtasks in a unified manner and
to cxplicitly represent the particular link orderings that were chosen. A representation of the
utilization of resources by subtasks as discrete variables is then created. A structure which
holds for each subtask the possible paths through the task graph back to the virutal source is
created from the subtask precedence matrix. This structure is created by a recursive depth-
first scarch procedure and is used to evaluate the exccution state of subtasks while the simu-
lator is running. Generating this structure reduces the computation that must be done at
simulation runtime by facilitating the use of efficient indexing schemes. This representation,
as explained earlier, directly allows delays to be included in the description of when a partic-

ular subtask cxecutes.

The scheduling simulator is time-based: the simulator does some processing for the
‘‘current time’’ and then increments its notion of time by one unit. Since the simulator

decals on the level of subtasks, its granularity is significantly larger than an architectural

simulator. The processing (or communication) time of subtasks must all be specified in
some common, smallest increment; the choice of increment is application specific but reason- -

able choices are tens, hundreds, or thousands of microseconds.

At cach time increment, the simulator browses through subtasks that are part of the
task that has most recently arrived and subtasks that are part of tasks that have arrived in the
recent past. Each of those subtasks is described by a discrete variable which gives its own
resource requirements time-shifted by the time of subtasks which precede it and the delays
which it and its predecessor subtasks incur. Once all of the time offsets have been com-
puted, the starus of cach subtask—waiting to be initiated, waiting for other subtasks to
finish, alrcady initated, just finishing, and completely finished—can be immediately inferred.
If a subtask is already initiated, it continues to require resources. If a subtask is waiting to

be initiated, it represents a new demand for resources.

The simulator first assigns resources to subtasks that are in the midst of processing;
this satisties an underlying assumption about preemption. The resource assignment is done
by matching the resource required by cach subtask to a description of the resource pool that
was provided to the simulator. If there is a surplus of resources, the new demands can be
met. New demand may, however, be greater than available, unassigned supply. This is

what characterizes a class two execution environment.

Delay heuristics come into play at this point. A subtask servicing mechanism is the
arbitrator between demand and supply. The simulator pares down demand by delaying sub-
tasks that find themselves at the head of subtask delay lists. The lists are constructed by
ordering subtasks according to one of several scoring algorithms. The scoring algorithms
represent the application of queue servicing rules or delaying heuristics and are based on
task, architccture, and mapping parameters. The simulator mechanism for this paring is

fairly simple: the delay coefficient, D, which corresponds to that particular subtask/arrival is

incremented.

Demand for all resource types must be cxamined so that it along all resource dimen- -
sions, instantancous demand is less than or cqual to instantancous supply. If any dclaying is
made, the timestep is resimulated to sce if there were any unanticipated effects of that delay-
ing. For simple graphs, this resimulation is not important. Resimulation is nccessary to
catch second-order cffects caused by graphs which contain complicated signalling constructs

or which contain inter-arnval initiations.

The simulator continues stcp-by-step subtask assignment and, along the way, monitors
results of the simulation. The choice of what to monitor is a critical element in this simula-
tor. Unlike the tools which support the state generation and enumeration methodology, this
simulator does not explicitly keep track of, or search for, initiation or mapping cycles. In
addition, the state of the system is not explicitly cnumerated. The only information that is
saved from step to step are the delay coefficients because they are needed to compute the
status of subtasks. The simulator can be instrumented to generate performance metrics such
as latency and throughput. These metrics can not be directly used to evaluate a
configuration architecture. Instead, they can help to provide a rejection test: if the combina-
tion of the task graph, allocatuon, and delay heuristics does not mcet an application's perfor-
mance standards under this simulation, then it will not perform better in an architectural
simulator (or a real system). Subsequent detailed simulation will yield better performance if
there is some peculiarity about the synchronicity of tasks that is revealed in the scheduling
simulator and is masked in the architectural simulator. In this case, it is still better to
address these synchronizations in the choice of allocation and ordering parameters than to
assume that they will never occur under detailed simulation. If the allocation and mapping
parameters do not adequately serve task and arrival demands, this simulator should help

dctermine whether there are fundamental problems in the allocation (too few resources) or if

- 134 -

the assigning and delaying heunistics are poorly matched to the task. Aside from using per-
formance metncs to provide rejection tests, the simulator can provide runtime information
about the low-level sequences of initiations and delays. For example, bounds can be placed
on the delaying of crtical subtasks and the simulator can detect whether those bounds are
exceeded. This is useful in determining delaying approaches which favor initiation of sub-

tasks that lic along cntical paths of the task.

7.2.1. Complexity

Some bounds must be placed on subtask delays in order to coerce some level of sys-
tcm performance. If a delaying heuristic causes some subtasks to delay indefinitely, the
heuristic should probably be modificd. A more practical concern is that the simulator should
be required to evaluate a stable number of subtasks: tasks that arrive and never leave require
evaluation at each stage of simulation. If tasks could take infinitely long to execute, then the
number of subtasks for the simulator to consider would grow lincarly with the timestep of
the simulation. Note that the restrictiveness of the maximum-delay bounds is not at issue:
since they are upper bounds, they can be made generously large and still serve both above
purposes. If some latency bound may have been placed on the task graph as part of a set of
configuration performance metrics then the choice of bounds is made a bit easier: if the task
must complete in B time units, then no subtask can be delayed by more than B units.
Morcover, subtasks along the longest path (which has a latency of, say, L) can be delayed

by an aggregate amount of B - L units,

The complexity of this simulation lies in the size of various parameters. Each simula-
tion cycle will require the evaluation of all subtasks, §, in each task arrival that must be con-
sidered for the current timestep. The number of arrivals, A, that must be considered is

related to the maximum latency of the task set, B and the task interarrival time, /AT. This

rclationship is as follows:

A=BdivIAT+ 1if(B mod IAT) =0
0if (B mod IAT) =0

There are A*S subtasks to cvaluate per timestep. Each subtask requires a computation of its
current initiation state, which involves a summation over all of its predecessor subtask paths.
Al cach armival, a new task must be considered but the oldesi anival thar was being

cvaluated can be removed, as can all delay coefficients saved for subtasks for that arrival.

7.2.2. Delay Heuristics

An amival-based servicing policy biases access to contended resources towards sub-
tasks that have cenain age characteristics. In the architectural specification in Appendix A,
tasks arc tagged with an arrival number. This arrival number allows all of the subtasks in
the system to be ranked according to relative age. One arrival-based heuristic orders all of
the subtasks according to age and then initiates tasks which are oldest. An intuitive explana-
tion is that tasks that have been waiting the longest are, in some way, the mest deserving of
resources. This policy is similar to age-based service policies in operating systems. The
longer a process sits on a run queue, the higher its priority gets, until it is eventually run.
An implementation structure here could be some sort of FIFO. An altenmative heunstic
would order all the tasks and then bias servicing towards tasks that are the youngest. In this
case, resources are allotted to tasks that haven’t been aging, with the assumption that new
tasks which are being processed cfficienty should get whisked through without being bur-
dencd delayed by old tasks that have already been tainted by a delay. A youngest-first pol-
icy is similar in implementation structure, though not exactly in intent, to least-recently-used
memory management policies which allow memory pages which are most active to be
prescrved in fast, primary memory, while pages which are not as reccnty active are sent

back to secondary storage.

- 136 -

The aging heuristic which biases towards older tasks is a flow-control heuristic. In a
task servicing environment, a good gencral observation is that old subtasks are old because
cither they are not ready to be serviced, i.e. not all of the parent subtasks have completed,
or adequate resources are not available to allot to them.! Schedule simulation has shown that
over a broad range of task graphs, the application of this policy causes all tasks to
complete—the flow of tasks into and out of the system is conserved—though not necessarily

at a minimal latency.

The sccond policy, bias towards younger tasks, achicves higher latency performance
for some subtasks at the expense of others. When properly tuned, newly arrived tasks will
get preference for resources and will exccute at a minimum latency. The task latency will
not necessarily be as low as that in a class one cxecution environment because there may be
competition for resources within a task and fully tuning the aging computation may not be
possible. When ncwly arrived tasks get preference for resources, something must get
crowded out. Subtasks that are downstream in the graph will tend to be unfairly biased
against subtasks of newer arrivals which are necar the top of the task graph. What this
mecans is that older subtasks will tend to get crowded out of scrvicing by newer subtasks.
Tasks which have relatively high peaks in resource demand caused by competition among
different arrivals will be most susceptible to this crowding. The subtasks which belong to
older armivals will, when this demand peak occurs, become delayed and must wait for all
younger-arrival tasks to receive service. If new tasks arrive and begin to compete for these
resources, the subtasks that have been waiting around will get crowded even more: the
delaying gets larger and larger until the subtask is hopelessly aged. This heuristic is interest-
ing because although it fails in resource-poor cnvironments, in some time-critical applica-

tions, it is less important that all results get processed as it is that some results get processed

! For the purpose of this simulation, the costs involved in attempting o service tasks which are not ready
are ignored.

in a timely manner. A more realistic application of an aging hcuristic would take both
arrival and subtask age into account. The two age heunstic domains, arrival and subtask

hicrarchy, can be combincd in the obvious ways.

7.2.3. Cost Based Heuristics

Another class of heuristics is based on the cvaluation of the task graph and the assign-
ment of costs to the delaying of certain tasks. Several factors come into play when consid-
cring the cost of delaying a particular subtask. First, a subtask may be part of the critical
(longest) path of the task graph. If this is true, then delaying it will directly affect the
latency of the graph. Subtasks that imposc larger latency costs could be prioritized over
non-critical-path subtasks. A second factor is the hidden cost of delaying. If a particular
subtask with many successor subtask chains (fig. 7-2) is delayed, then all of those chains
will be delayed. This naturally poses a bias towards initiating tasks which are towards the
top of the task graph over those near the bottom. For example, in figure 7-2, subtask v, has
7 successor tasks, whereas subtask v, has only 3 successors. In this example, v, would have
a higher cost-of-delaying than v,;. As mentoned earlier, this cost method should not neces-
sarily be extended into inter-frame contention because biasing towards both earlier subtasks

and earlier arrivals can, due to inter-arrival competition, result in earlier tasks never complet-

ing.

7.3. Architectural Implementation Considerations

Depending on the implementation architecture, it is likely that many of the above
heuristics can not be applied globally. That is, many of them requirc keeping track of the
status of other subtasks and resources. For distributed implementations, it is never cost-free
to cxchange state and control information about resources and subtasks: furthermore, the pro-

cessing and transfer of this information can add to the load that is being monitored: the

Figure 7-2: Note that processing subtask 2 has 7
successors, whereas subtask 3 has 3 successors.

uncentainty principle is applicable to network instrumentation. In addition, underlying archi-
tectures may have low-cost primary mechanisms for distributing subtasks and higher cost
secondary mechanisms. From an architect’s point of view, the design of these low-cost
mechanisms warrants extensive experimentation and simulation. From a configurer’s point
of view, the low-cost mechanism may or may not be usable given a particular application.
The evaluation of higher cost and lower cost mechanisms nceds to be supported. Scheduling
simulation provides a route to the cheap investigation of these approaches. Two examples of

this investigation will be given. The first is the cvaluation of an underlying low-cost task

servicing mechanism provided by the d-ALPS architecture in Appendix A.> Given this

mechanism, schedule simulation can be used to compare higher cost but possibly more suit- -
able servicing mechanisms. The sccond is the implicatons of a limited input queucing

structure which in turn requires that resources be committed to serving a subtask some time

betore actual initiation. This results in additional utilizaton of resources. In a class one

cnvironment, the timing of the committing periods ¢an be modelled statically, and the addi-

tional load encoded in an expanded demand graph. In a class two environment, this is not

possible: the burden changes dynamically. Schedule simulation can present the impact of
the requirement to bind resources in either environment and can evaluate altemnative commit-

ting strategies,

The low-cost scheduling in the distributed implementation described in Appendix A is
vased on a local and global round-robin servicing of tasks. Each node in the architecture
has an output qucue that is served in a round-robin fashion. The local queues are arranged
in a logically circular quecue, cach receiving a “‘control token,”” allowing it to attempt to ini-
tiate all of the children of the subtask that is on top of the queue. As a basis for com-
parison, facilitics to simulate this low-cost scheduling mechanism were built into the
scheduling simulator. These facilities involved creating structures to represent a circular list
of subtask queues. The simulator maps a subtask to a particular resource (assigns the sub-
task) when it initiates that subtask, and provides this information to a scoring function which
orders subtasks based on location. It should be mentioned that, in the general (ideal) case,
the location is an arbitrary subtask attribute. However, in configurations with small node
counts, location will be related to the particular timing of graphs with concurrent elements.
That is, if subtask assignment is based on location, then timing-adjacent subtasks will be

mapped to location-adjacent resources.

2 This appendix gives a specification for a distributed ALPS architecture (d-ALPS) which is comprised of a
token-bus based connection of primitive-control unit pairs.

A reasonable implementation of some of the above heuristics is to layer them under the
low-cost control token passing mechanism. The heunstic is then applied to each subtask in
a local output queue but servicing is still passed according to location. Altering the local
servicing policy—the servicing mechanism that cach node employs in isolation—to imple-
ment one of the above hcuristics would not be termibly difficult. Given the architecture
described in Appendix A, sonting and costing functions required for implementation of one
of these heunstics could be executed when the node would be otherwise idle. Changing the
vlobal servicing policy—the node-te-node round robin control token passing—could be
difficult and expensive. Since the above heuristics require several stages of transferring or
exchanging information, a complete implementation implics that the low-cost control-passing

mechanism would have to be bypassed.

7.3.1. Processor Binding

A particular architecr:r2! problem that warrants investigation via schedule simulation is
processor binding. The architectural specification in Appendix A describes a system in
which output quecues are used to buffer data for subtasks that have not yet been initiated on
processors. The data for a particular subtask may logically reside with several predecessor
subtasks and physically may sit in several different output queues. As explained in chapter
4 and in the d-ALPS specification, a priority link is used to establish logical subtask to phy-
sical primitive mappping. This process is implemented in an architecture where there is no
'input qucucing of subtasks except for the subtasks that is about to execute. That is, in figure
7-2, a processor of typc X can not accept data for subtasks v,, vs and v, at the same time.
This lack of inpul queucing implies that all data for a subtask (all communications subtasks
prcceding that processing subtask) must sit in output queues until a physical processor has
been bound, or instanuated to that particular subtask. Furthermore, if a processor is bound

to a particular subtask, it must stay bound until the remaining communication subtasks

- 141 -

cxccute. This identifies a fundamental utilizaton problem. If the binding (priority) com-
munication subtask is ready to be initiated before the remaining communication subtasks are - -
rcady, the processor will sit committed but idle during the interim. Given this implementa-
tion stratcgy the bound-but-not-excculing stale represents a systematic utilization

incfficiency.

7.3.2. Commit Groups

There is a fundamental representation extension which must be made to describe pro-
cessor committing. Unfortunately, the purity of directed flow graphs composed of nodes
with independent costs is lost. Consider the task graph in figure 7-3(a). Subtask v, initiates
communication subtasks ¢. (a broadcast) and ¢, which in tum causc processing subtasks va,
vy, and v, to execute. Both ¢, and ¢, are the binding subtasks in that they cause resources
10 be committed to processing v,, v,, and v,. A graph expansion can be performed which
causes the communication subtasks to be explicitly represented and ordered according to a
predefined sending priority: ¢, < ¢, (fig. 7-3(b)) The graph now looks similar to those in
chapter 4. Processors for v, and v, would be found before the processor on which v,
resides initiates ¢,. In a class one allocation environment, these processors are assigned
instantaneously. In a class two allocation environment, finding these processors could
involve delays duc to contention for these resource types. Regardless of the allocation
environment, after processors are found, ¢, can begin. Again, in a class two cnvironment, ¢,
may not begin immediately. The allocated processors remain allocated-but-not-processing
until ¢, completes. Then their statc changes instantancously and they are now executing v,
and vy. As soon as ¢, completes, the same committing and then communicating process is
undertaken for v,. Figure 7-3(c) shows this process graphically. Nodes v, and vy represent
commit ‘‘subtasks’’ for v, and v;. The time they require is dependent on the time it takes

for ¢, to be initiated and then executed. In a class one allocation environment, this is simply

]

Processing
Subtask

Communication
Subtask

Null Node

Figures 7-3(a) and 7-3(b): An example task graph and the
expansion of 7-3(a) explicitly representing communication

subtasks and a single subtask ordering.

- 143 -

Processing
Subtlask

Communication
Subtask

Signai Nade

Resource
Commut Node

Figure 7-3(c): An expansian of 7-3(a) showing
resource committing.

L[c,]). In a class two allocation environment, this is a variable time.

A reasonable way to denote this variability is to define the collection of nodes which
participate in the committing. A ‘‘commit group’’ is then composed of three elements. The
first is sct of subtasks that must be created to act as commiting nodcs; in this example, v,
and v; comprise this set. The second clement is a (single) communication subtask which
can be initiated after the commiting nodes are assigned; in this example, ¢, can be sent after

v2" and vy are initiated. The final clement is a signal node whose initiation represents the

cnd of the communication subtask and causes the processors which were ‘‘executing’ vy’
and vy to begin exccution of subtasks v, and vy, This signal node is so named because, in -

effect, it signals that v,” and v4” are finished and v, and v, can begin.

Commit groups can be used equally well to represent the merging of several communi-
cation subtasks to a single processing subtask. Consider the task graph in figure 7-3(a).
The merging can be expanded to represent predefined priorities: ¢3 < ¢4 < ¢s. In this exam-
ple. subtask vs must be committed before ¢5 can be sent, and can be initiated after ¢ is sent;
for the merging case, the signal node follows the last merging communicaton. Figure 7-3(c)

depicts this committing.

7.3.3. Integration

The commit groups can be integrated into scheduling simulation cleanly by observing a
few basic principles. First, from a time-step simulation point of view, the simulator can
reference some structure holding the status of various commit groups to investigate the state
of commit subtasks. The communication subtask is given an infinite initial dclay until the
commit subtasks are assigned; the commit group then causes that initial delay to be set to
whatever delay was incurred in assigning commit subtasks. This prevents the communica-
tion subtask from being initiated until at least the commit subtasks are initiated. The execu-
tion time of the commit subtasks is set as infinite until the signal node is reached; it is then
sct 10 zero so that in the next timestep the commit subtasks will not require processors and
the processor will be available for the processing subtasks. The above technique has been
fully implemented as part of the scheduling simulator. A commit group manager detects and
creating commit groups for various task graphs as required. During runtime, it monitors the
progress of signals and manipulates the delay cocfficient lists and exccution times to accu-

rately modcl the scheduling implications of processor commits.

<145 -

7.4. An Example

An cxample simulation is as follows. Figure 7-4(a) shows a rcasonably complicaied
task graph. This task graph demonstrates parallel demands for both communications and
processing resources. Note that communications subtask ¢, is a broadcast to subtasks v, and
vy, whercas ¢, initiates ¢,. The graph is expanded to represent both the subtask orderings
and resource bindings (fig. 7-4(b)). For this example, resources must be committed to sub-
tasks before the subtasks® preceding communications. For example, in figure 7-4(b) proces-
sors for subtasks v, and v, must be assigned before ¢, can initiate. A more comnlicated
example is that a processor for subtask v, must be assigned before communication ¢4 can

initiate, but the subtask can not execute until after ¢ has occurred.

Source

Sink

Figure 7-4(a): An example task graph.

\ - 146 -

Processing
subtask
> Communicstion
subtask
Resource
sommit node
Signalling
sode

Figure 7-4(b): An expansion of the task graph in 7-4(a)
to show subtask orderings and resource bindings.

Tables 7-1(a) through 7-1(c) provides subtask allocation information. Note that a class
two cxecution environment has been created by severely restricting the numbers of proces-
sors and communications channels and by choosing a relatively low interarrival time. The
ratio of the interarrival time to the latency, should this graph be exccuted in a class one
environment is about five to one. That is, there are about five new task arrivals during the

execution of one task. This ratio is incresed in a class two environment since the latency

—e—————]

- 147 -

7-1(a): Processor Subtask Information
Subtask | Graph Level | Processor Type | Execution Time (usec)

vO 0 Source 2000 (IAT)

vl 3 A 2500

v2 5 B 3500

v3 5 A 2000

vd 5 C 4200

vS 8 Sink 0

7-1(b): Communication Subtask Information
Subtask | Graph Level | Communication Time (usec)
c0 1 300
cl 3 200
c2 4 900
c3 6 400
c4 4 300
c5 6 700

7-1(c): Allocation Information
Resource Allocation
Source 1
A 10
B 10
C 5
Sink 1
Comm 1

Tables 7-1(a) through 7-1(c): Subtask and Allocation
Information for Schedule Simulation Example

will increase, but the arrivals will remain fixed.

Simulations were performed choosing the six different delaying heuristics listed in table

7-2. In this table abbreviations of cach of these heuristics is also provided. Task latency

- 148 -

Delay Heuristics for Example Simulation
Abbreviation | Description
FF Delay younger arrivals
FF_FA Dclay younger armrivals/higher level subtasks
FF_BA Delay younger arrivals/lower level subtaskslder subtasks
BF_FA Delay older arrivals/higher level subtasks
BF_BA Delay older arrivals/lower level subtasks
LO Use location-based delay mechanism of d-ALPS (Appendix A)

Table 7-2: Delay Heuristics for Example Simulation

was recorded to give an example performance comparison. Figure 7-5 shows the latencies
resulting from the application of the six heuristics. Using three of the six heuristics, the
simulator demonstrated that the combination of the allocation and delaying heuristic could
adequately process the task graph although with slight differences in average latency. These
three heuristics all involved the biasing of delays so that older tasks and/or subtasks were
given preference when demand outweighed supply. The two heurstics which biased
towards newer tasks causcd the system to initially deliver tasks at low latency, but once the
*‘pipe’’ filled up, the older tasks which had not yet finished were crowded out. The final
heuristic is representative of the queue servicing mechanism used by the architecture
described in Appendix A. For this graph, it can be considered equivalent to a random delay
servicing heuristic since the task graph timings are not highly synchronized. It also failed to

provide flow control for the graph executed in this allocation environment.

7.5. Results and Conclusions

The scheduling simulator provides a framework for investigating subtask mapping in a

class two allocation environment. The principal parameters to any class two system are the

jPaaey,

rgv

- 149 -

Schedule Simulation Example

Latency 160
{* 100 usec)
140
120
< BF BA
- BFFA
100 - ’l"’(‘-.".l-- 0 l a —C & 1
\\wmu.mmv + o
80 vv ‘v' O FFFA v
60 ~ } -
40 LI M
0 10 20

Arrivals

Figure 7-5: Latencies resulting from the application of six
delaying heuristics on the task graph of figure 7-4(b).

task graph, the specific graph detailing parameters, the allocation, and the mechanism(s) that
the underlying architecture will use to assign subtasks to resources. The simulator provides
a step-by-step statement of the assignment without requiring all of the principal parameters
to be unified into a single mathematical or state relationship. As the scope of this thesis is
to present a range of analysis methodologies which support the investigation of mapping
parameters such as delay heuristics, evaluation of these heuristics beyond a broad and prel-
iminary level falls beyond its scope. Some preliminary investigations with this simulator
have shown that the low-cost location-based assigning mechanism utilized by the architecture

in Appendix A docs not regulate the latency allocations as well as age-based heuristics in

- 150 -

highly constrained allocations. Furthermore, hcuristics which bias towards newer jobs tend
to yicld a high variation in latency. It it anticipated that this simulator will be useful in con- -

ducting a more thorough study over a broader range of problem graphs and allocations.

CHAPTER 8

Architectural Simulation

This chapter will introduce architectural simulation as methodology for studying alloca-
tion and scheduling problems. A simulation framework will be introduced. This framework
has been developed to support the d-ALPS architectural specification described in Appendix
A. Tt includes a task and configuration design capture facility; a simulation interface and
interaction cnvironment; and instrumented, event-based architecture simulators. The chapter
will provide some example simulation studies which demonstrate how simulation can be
uscd by a configurer to decide upon a particular application configuration and by an architect

to gain insight into the architecture itself.

An architectural simulation provides detailed timing information about the progress of a
task graph when it is executed on a particular system. The system includes the mapping
parameters and servicing hcuristics that the architecture employs, as well as some model of
the implementation of those parameters so their costs can be assessed. To narrow the field
of this discussion, the d-ALPS architectures in which we are interested can be broadly
characterized as a networked or bus-based multiple processor system. The simulation can
represent system functions at different levels of detail, and in doing so can vary in accuracy
in its representation of the architecture it is modeling. For example, the representation can
be at the gate level, the functional block level (processor-memory-switch), or the network

node level.

There are a variety of support environments for modeling concurrent systems at the
varying representation levels. On the gate level, a set of simulation tocls under the Mentor

Graphics IDEA System (Ment84] provide support for the design and analysis of digital

- 151 -

- 152.

circuits. The event driven simulator, SIM, verifies the functionality of a design that has been
specified via design cditors. The simulator expects that systems be defined to the chip level -
and provides dctailed timing information, taking into account technologies, propagation
delays, and logical behavior. While a SIM simulation would most accurately reflect the logi-
cal functionings of individual elements of a concurrent system, it would be inappropriate for
modceling the behavior of collections of these elements because there are no abstractions for
higher level behavior modeling. On the functional block level, a PMS-level simulator, Net-
work IL5 [Garr87), provides a simulation of computer systems that are described by process-
ing elements, data transfer devices, data storage devices, (software control) modules, and
files. The event-based simulator activates control modules according to time, message, and
semaphore conditions, The control modules then initiate activity among the hardware ele-
ments. The simulator is intended to model concurrent systems and reports on higher level
events such as utilization and status of network resources and run-time reports of significant
events. Simulation at this level appears 10 be more appropriate to model the behavior of
concurrent elements. However, this particular tool is not suitable for distributed and
dynamic, message-dependent control systems. The simulators that were developed to sup-
port the d-ALPS architecture described in Appendix A fall between these levels. They con-
sider the architecture to be composed of a number of nodes which run an identical protocol.
Each of these nodes, in addition, has separate resource attributes and processing capabilities.

The simulators model the execution of the common protocol each node pani_cipates in to dis-
tribute and process subtasks. !

Architectural simulation is an intuitively simple and computationally manageable
approach to studying the allocation and mapping probiems associated with the scheduling of

a task graph onto a set of processors. The methods described in previous chapters introduce

! Detailed information about these simulators can be found in [Leib86], [McCo87), and {Mano87).

- 153 -

ways in which the task graph and the mapping parameters can provide allocation and map-
ping information and how basic architectural assumptions can be inserted into the methodol-
ogy representation. Simulation allows parameters of the underlying architecture to coexist
with the task graph and mapping parameters to provide a view of how a workable system
would perform under that combination of parameters. These architectural factors include
details of task distribution mcthods that can not be abstracted into higher level representa-
tions, timing informaton, and protocol implementation costs. As mentioned in previous
chapters, some of this information can be represented in usable hierarchies, such as state
diagrams or expanded directed graphs. But these approaches can not be expanded
indefinitely. The modifications and special-cases that must be made to include this informa-
tion will eventually obscure the representation and reducc the feasibility of analysis tech-
niques which rely on the representation. Furthermore, the complexity of various analysis
techniques multiplies with the number of states or nodes that are added to expand the

representation.

The type of information that architectural simulation provides depends to a large extent
on the level of simulation that is performed, the limitations of th: simulation implementation,
and the limitations of the simulation environment. The level of simulation, as explained ear-
lier, can be structural or behavioral, and can provide, as its highest level of granularty,
information on a gate level to information on a network transaction level. Problem
definition plays a key role in deciding upon the level of simulation. A gate level simulator
would be useful to a builder of a high level architectural specification. To study allocation
and mapping problems in the context of a d-ALPS specification, a protocol-level simulation
is desirable, provided that reasonable timing costs of those protocol transactions are assessed.
The simulator implementation refers to the method by which the simulator is constructed, the

capabilities of the underlying simulator support mechanisms, and the costs of implementing

- 154 -

additional instrumentation. The simulation environment can delimit the interaction boundrics

of the simulator. It inciudes the types of information that are provided to the simulator, the - -
ways in which the simulator can be controlled, and the extent to which interesting parame-

ters can be defined or specified. It may be difficult or impossible to extract certain informa-

tion or perform unanticipated monitoring functions if the interaction environment is not gen-
eralizable.”

Architectural simulation can be employed by both the architect and the configurer to
study a particular underlying architecture as it applics to example applications. A configurer
takes the underlying architecture as a given. The performance of a configuration on an
application is investigated in a specify-investigate-respecify cycle. The configurer specifies
the task graph and associated resource demands, creates an initial configuration, simulates
that configuration as it operates on the task graph, evaluates its performance, and modifies
the configuration according to simulation results. This configuration cycle is facilitated by
simulators that provide monitoring functions can be corroborated with the general perfor-
mance criteria by which the configurer is guided as well as additional information which
may ellucidate why a configuration doesn’t mect those criteria. Additional information may
be resource-specific, such as load on, or contention for, particular processing or communica-

tion resources, or it may be resource general, such as queue utilization.

The simulators and simulation environment that have been built to support the d-ALPS
architecture project provide the following information transfer. The user enters a task graph
and configuration architecture through a design capture and editing facility [Gold86]. The
task graph is comprised of a directed graph where each node contains a processing resource.

A processing primitive library which maintains a description of the types of primitives avail-

2 Though it seems unintuitive, it may be more difficult to design methods of specifying measures and com-
municating that information to a simulator than actually computing those measures.

o

- 155-

able to the configurer can be accessed and updated at this point. The architecture is
comprised of pools of resources which correspond in type (but not necessarily in number) to -
the primitives in the task graph. When a simulation session is initiated, the applicaiton task
graph, the configuration architecture and the primitive library arc downloaded to the simula-
tor. The user then chooses the types of measurements that the simulator should monitor and
report. These mecasures include task latency, resource utilization, and memory utilization.
For each of these measurcs, a domain can be chosen. The domain is the category over
which the measure is monitored. Categories that are presently supported are system-level
measurcs—inclusive of all system resources—or resource type-level measures; additional
domains can include subtask- or arrival-level. The simulation is commenced and the user
reccives a view of the d-ALPS architecture in terms of the monitoring measures that have

been specified.

8.1. Example Configuration Study

The following example demonstrates how a configurer might use simulation to decide
upon an application architecture. The example is taken from [Hart86] in which it is used to
demonstrate the functioning of a data flow-based signal processor, DFSP. Their architectural
approach makes use of a centralized task dispatching mechanism which controls the execu-
tion of a bank of execution-independent processing elements. The processing elements per-
form block processing operations, fetching data from a shared data storage. They are con-
trolled via operation packets and they return result packets to a central activity store when
they finish execution. The activity store contains a representation of the directed task graph

and performs operand matching, memory management, and activity detection operations.

The example task graph is provided in figurc 8-1. This task is called a three sensor

problem, as its function is to takc inputs from three geographically distributed sensors that

- 156 -

Sre

© @0‘

Figure 8-1: A task graph for the three sensor problem.

listen to a signal emanating from a single source. The signals at the sensors should be ident-
ical except for additive noise, signal strength, Doppler shift, and a delay proportional to the
distance between the signal source and the sensor. A simplification of the problem considers
a single transmitted frequency band and looks for the distance differences in the signals to
triangulate the location of the source. More details of this application can be found in
{Mint81]). The simplified signal processing algorithm is as follows. The signal is initially
demodulated and an FIR filter is applied. The Winograd Fouricr Transform (WFT) of each
signal is then taken. The signals are then cross correlated by multiplying the transformed
signals together point-by-point, performing an inverse Fourier transform (iWFT), and search-
ing for the maximum in the lower half of the resulting sequence (peak select). The first task
set, the FIR filtering and WFT are performed by a single processing resource. This resource
will be denoted: FIR-WFT. The second task set, the multplication, iWFT and peak select,
arc all performed by a second resource. This resource will be denoted: Mult-iWFT. The
resulting value (and index) for each corrclated signal is sent to a display processor. Process-

ing requirements, in terms of sampling rates and block sizes, were provided with this exam-

- 157 -

plc. They are listed in table 8-1.

There are several ways of considening a configuration problem. Hartimo et al describe
the processing times they used when simulating this example task graph on their architec-
ture. The processing times were based on the number of instructions cach of the four
macro-operations (filter, WFT, vector multiply, peak sclect) required times the cycle time of
the signal processing primitive (IBM RSP rescarch signal processor). The processor bank in

the DFSP architecture was comprised of these general purpose processors.

One perspective of the configuration question is to assume that high-speed special pur-
pose primitives can be used for each of the above macro-operations. Execution times for
these high speed primitives can be determined by consulting the literature. Once execution
times have been chosen, the configurer can be provided with a primitive library which con-
tains candidate primitives. A configurer would then want to find a d-ALPS configuration
architecture which meets the throughput and latency requircments of the task at hand. For
the purpose of this exercise, we will consider two configuration scenarios. The first is a

resource-constrained scenario and the second is a task requirement-based scenario.

Processing Requirements

Resource Requirement

Sourcel 1K words per 10 ms
Source2 1K words per 10 ms
Source3 0.5K words per 10 ms

FIR-WFT 1K words per 10 ms
Mult-iWFT | 1K words 10 ms

Table 8-1: Processing Requirements for Example Simulation Study.

- 158 -

The resource-constrained scenario is as follows. Suppose the configurer can build a
system with a fixed number and composition of resources. What is the maximum sampling
rate (interammval time) that the system can suppont? In this case we will assume that two
types of fast primitives exist; the first one can perform the demodulation, FIR filter, and
WFT, and the second one can perform the complex multiplication, iWFT, and peak sclect;
this breakdown is shown in figure 8-1. For this example, we choose an allocation presented
in table 8-2. Note that the execution times of the primitives are relatively fast. Simulation
can provide us with the minimum interarrival time (IAT) by stanting with a generously large
IAT and iteratively increasing it until the system reaches capacity. A configurer uses this
simulation by specifying the task graph, choosing these two types of processing primitives
for the two subtask-types, configuring a fixed-allocation architecture as described in table 8-
2, and providing an initial interarrival time. By mecasuring systcm latency and processor util-
ization, the capacity of the system can be monitored. Table 8-3 shows the cffect of decreas-

ing the interarrival time.

Allocation Information
Type Processing Time Allocation
Source 1K every 10 ms 3
FIR-WFT Sms 7
iWFT-MULT | 6 ms 7
Sink 0 1
Bus 10 Mwords/second 1

Table 8-2: Allocation Information for Example Simulation Study.

- 159 -

Performance Information
Interarmval Time { Latency (avg.) | Pecak FIR-WFT Use | Peak Mult-iWFT Use
(usec) {uscc) (out of 7) (out of 7)
10000 12760 3 3
7000 12500 3 3
5000 12800 6 S
4000 13000 6 6
3500 13700 6 6
3000 16800 6 7
2500 unstable 7 7

Table 8-3: Simulation Results for Example Simulation Study.

Task throughput, the rate at which tasks are processed by the system, can be derived
from latency information by noting that fatency is recorded as a latency evenr. The time
differences between these events indicates the throughput, and should, on average, be equal
to the task interarrival time. The system met this throughput when operating at all arrival
rates except at the 2500 microsecond interarrival time. From table 8-3 it is evident that as
the demand for processing and communication resources increases, the resulting contention
adds to the task latency. At an IAT of 2500 microseconds, the peak demand for processing
resources reaches 100% for both types of primitives and the throughput of tasks no longer
matches the interarrival time. Among these simulations, an IAT of 3000 microseconds is
minimum.

A sccond configuration scenario is to consider as a task requirement a specific interar-
rival time and to find an allocation that is suitable. For this example, we will assume that
the configurer must find an allocation which executes the task graph in figure 5-1 with an

interarrival time of 2000 microscconds. The configurer can specify the task graph in the

- 160 -

same manner as above, but will generate an architecture that is resource-rich. Such an archi-
tecture can be found by using the static analysis techniques of chapter 5 to find (approxi- -
matcly) the number of resources needed to create a class one cxecution environment. Alter-
natively, the configurer can rely on past simulation experience, such as the previous simula-
tion, to decide on a gencrous allocation. The allocation in table 8-4 will suffice as an initial
gUCss.

Simulation to find the minimum feasible allocation can proceed by examining the load
on various system resources as the quantity of those resources is iteratively lowered. Table
8-5 shows the effect of decreasing processor resources. The latency increases slightly until
the allocation is insufficicnt; at that point the system no longer delivers tasks at a steady
rate—the throughput docs not match the interarrival time—and the latency of those tasks

varies eratically.

While the demand for processors remains fixed, the supply decreases; the resulting
contention causes the overall latency to rise. When the processor allocation is reduced to 9

of cach primitive type, the system can not process tasks to meet throughput requirements.

Allocation Information
Type Processing Time Allocation
Source 1K words every 10 ms 3
FIR-WFT 5 ms 20
iWFT-MULT | 6 ms 20
Sink 0 1
Bus 10 Mwords/second 1

Table 8-4: Allocation Information for Example Simulation Study.

- 161 -

The system latency grows slowly as tasks are buffered for longer time periods and eventu-
ally the buffering grows out of control. Given these simulations, the minimal resource allo- -

cation rcquircment is 10 of cach primitive type.

8.2. Example Architecture Comparison Study

An architect might be interested in simulating tasks which have interesting loads or

concurrencies to measure the effectivencss of task servicing facilitics of the rarget architec-

wre.> Alternatively, an architect may wish to extract overhead and efficiency information by
determining the cost of task distribution and management facilities. This overhead can be
revealed via simulation comparisons with other architectural approaches or ‘‘ideal”
approaches. That is, the task overhead can be viewed as the differcnce in the latency of a
task which is implemented on the target architecture and the latency of that task as calcu-
lated as the longest path through the task graph. Simulation comparisons can be made by
finding tasks which have been used to measure the efficicncy or overhead of competing

architectures. By simulating the target architecture under the same load and demand

Performance Information
Allocation Allocation Latency (avg.) | FIR-WFT Use | Mult-iWFT Use
of FIR-WFT | of Mult-iWFT (usec (peak) (peak)
20 20 11120 9 12
15 15 11170 9 12
10 10 11320 9 10
9 9 unstable 9 9

Table 8-5: Simulation Results for Example Simulation Study.

3 The arget architecture is the underlying architectural specification that the architect is studying.

conditions as a competing architccture, the two architectures can be evaluated. This type of
comparison is typically considered benchmark comparison. An cxhaustive performance -
comparnison is not possible given a few benchmark tasks, as those benchmarks can not cover

all application domains and load conditions.

An example benchmark comparison can be made between the DFSP architecture and
the d-ALPS architecture. Both archtectures take the same fundamcntal approach to execut-
ing task graphs and incur costs that are within an order of magnitude of eachother. In addi-
tion, both architectures assume a microprocessor implementation of the task distribution,
memory management, and processor management control sections. The DFSP architecture
has a single, centralized control whercas the d-ALPS has a distributed control. Consider the
task graph in figure 5-1. Hartimo ct al simulate their DFSP architecture on this task graph.
They use the execution times and processing rates in table 8-6. These execution times were
derived from cycle counts of a single processor implementations of the filtering and
transform operations presented in {Mint81]. For the DFSP architecture, there is a single,
common data store so there is no need to pass data blocks between processing primitives.

The iungest exccution path is 87.2 ms (m.lliseconds). The DFSP architecture can service

Allocation Information
Type Processing Time Allocation
Source 1K words every 10 ms 3
FIR-WFT 582 ms 20
iWFT-MULT | 29 ms 20

Table 8-6: Allocation Information for Example Simulation Study.

- 163 -

tasks at an input rate of one 1K block per 10 ms (100 kHz) with a latency of 95.5 ms; the

dclay over an ideal implementation is 8.3 ms and is due to system overhead, such as data -

flow control, resource assignment, control packet transfer, etc.

The ALPS architccture can be simulated under the same load and task graph using a
simulator that models the specification in Appendix A. This simulator is called the d-ALPS
simulator, so named for the specification it models. This simulafor. described in [McCo87),
is an event-based simulator that shares the VISA interface and support environment with a
PMS-level simulator. The PMS-level simulator was used to develop the d-ALPS
specification and to provide a prototype simulator to develop the simulation framework. A
description of this simulator can be found in [Lecib86]. The two simulators have been
cross-verificd by applying the same task graphs to both and evaluating the resulting simula-
tions for coherency. The key feature of the d-ALPS simulator is that it estimates the timing
required for each stage of the protocol and provides a realistic view of the overhead incurred
by a system that is built to this specification. Its monitoring capabilities are, at this point,
equivalent to the PMS simulator but can be enhanced because of the finer granularity of the

implementation.

The three sensor problem with the primitive timings listed in table 8-6 can be executed
in 89.6 ms by a system conforming to the d-ALPS specification. The configuration architec-
ture is shown in figure S-2. This figure also shows that peak utilization of FIR-WFT primi-
tives was 18 and peak utilization of Mult-iWFT primitives was 10. The overhead due to
data transfers, task distribution and resource assignment is about 2.5 ms. For the task graph
in figure 8-2, both architectures had to assign six processing primitives every 10 ms. The
DFSP architecture did so with an average overhead of 1 ms per subtask. The d-ALPS archi-

tecture of Appendix A had an average overhead of 0.5 ms per subtask.

- 164 -

Figure 8-2: An algorithm, architecture and performance
results for the three sensor problem.

8.3. Conclusion

The usefulness of architectural simulation is that it verifies the performance of a partic-
ular architecture under a specified load. Architectural simulation requires that servicing
heuristics be specified and an implementation structure for those heuristics to be created.
Determining that implementation structure may not precede a desire to gain information

about the particular heuristic. In this case, architectural simulation would be premature.

Developing simulators is a challenging and time-consuming enterprise. Furthermore,

instrumenting these simulators, verifying them and integrating them with design transfer sys-

- 165 -

tems adds to the development time. Utilizing cxisting interface and interaction cnvriron-
ments reduces this time, but the implementation process is inherently lengthy and costly. -
Above all, the simulation methodology assumcs that the invcstigélor has something to simu-
late, e.g. a specification. The architect, who is interested in generating these specifications,
can investigate existing specifications via architectural simulation and can prototype newer

approaches with less costly, more flexible methodologies.

CHAPTER 9

Conclusion

This thesis described efforts that were directed at supporting the investigation of
scheduling and alflocation procedues and implementable task distribution and mapping
mechanisms. The perspectives of both an architect and a configurer were considered, as

they are the developers and employers of ALPS architectures.

9.1. Research Goals

An architect is intcrested in the analysis and design of ALPS-like sytsems. This
involves assessing the performance of existing ALPS architectures or architecture
specifications, such as the d-ALPS specification in Appendix A. New ALPS architectures
will most likely require refinements in the fundamental methods they use for distributing
tasks, as well as in the implementation mechanisms that support those distribution methods.
Analysis methodologies must support the investigation of existing and proposed task distri-

bution methods and mechanisms.

A configurer has a more practical view of scheduling and allocation problems. The
mapping mechanisms are assumed fixed or limited for an existing underlying support archi-
tecture. For the d-ALPS architecture, there is a single mapping mechanism; for future archi-
tectures, there may be altermative mechanisms. The configurer implements an application
task graph by amassing a collection of ICU-primitive pairs and plugging them into a rack.
In doing so, a set of explicit and implicit performance criteria—definitions of how well the
assemblage must work—arc observed. The configurer should be able to iteratively select,
analyze and verify a configuration; analysis methodologies should support this system

integration paradigm.

- 166 -

- 167 -

9.2. Achievements

As an interface between the definition of the scheduling issues and the methodologies
that support the investigation of those issues, the parameters of the scheduling problems that
are specific to ALPS architectures and ALPS problem specifications were developed. Task
specification parameters describe how a configurer can represent and manipulate an applica-
tion task graph. Manipulations which conserve the task graph’s trueness to the application
(i.c. those which maintain subtask connectivity and preccdence) provide alternative static
partial schedules. Static analysis methodologics provide a route to obscrving the impact of
these alternative partial schedules on resource demand. The methodologies have been imple-

mented as a collection of graph manipulation, expansion and analysis tools.

Architectural parameters describe the ALPS architecture on which a task graph is to be
applied. These parameters have configuration-general and configuration-specific portions.
The underlying architectural specification, such as the d-ALPS specification describes the
basic limitations of the support architecture, such as data transmission rates, task distribution
overhead, and memory bounds. The configurer adds to these restrictions by supplying an
application-specific allocation of resource pools; this allocation provides the processing
potential of the configuration architecture. Static analysis provides the configurer with allo-
cation bounds. Lower bounds describe the minimal processing power needed to service th.e
application, excluding overhead and task distribution inefficiences. Upper bounds provide
the configurer with the maximum effective processing power (exclusive of system
inefficiencies) to handle peak demands for resources—a generous (class one) allocation
which would require no buffering of demand. Implications of both general architecture
parameters and configuration-specific allocation decisions can be viewed via iterative archi-
tectural simulation. This provides a performance perspective of the architecture under vary-

irg load conditions. Architectural simulators which model both a prototype ALPS

- 168 -

architecture on a PAMS level and the d-ALPS architecture on a protocol level have been built,
verified, and integrated into a design capture and simulation environment. The simulators -
have facilitated example configuration experiments and have served as platforms for architec-

ture comparison and evaluation studies.

While simulators have been influential in the design and analysis of ALPS architec-
tures, simulator devclopment is expensive and lime-consuming. In addition, the underlying
simulator model is often difficult to change. Investigating large vanations on the architec-
ture, especially those on the task mapping level has been facilitated by schedule simulation
techniques. Task mapping parameters describes how a task graph which encodes a partially
static ordering of subtasks is mapped (dynamically or statically) onto processors via
heuristic-guided demand buffering procedures. Schedule simulation has provided a route to
the investigation and comparison of thesc mapping parameters by allowing a course-grained
model of the architecture and task graph to coexist with a framework for simulating the
cost-free dispatching and buffering of subtasks under the guidance of user-supplied heuris-
tics. An approximated representation of basic architectural mapping mechanisms can be
added to this framework. For example, the effect of committing links on resource binding
has been added to the model. As this first pass approximation can be difficult to refine,
architectural simulation seems to be more appropriate for analysis of the details of the imple-
mentation. The preliminary results of the application of schedule simulation are twofold. Its
design and development provided insight and impetus to consider additional altemative task
mapping procedures. In addition, analysis has suggested that task servicing policies which
consider graph depth and arrival of subtasks tend to cause tasks to execute with more

stable—though higher—Ilatencies.

- 169 -

9.3. Current Work and Future Directions

A prototype d-ALPS implementation which is based on the d-ALPS specification is
being constructed at Brown University under the direction of Professor Dick Bulterman. In
addition, ALPS hardware and software emulators arc being constructed. The hardware emu-
lator is an implementation of the d-ALP> logical control protocol on general purpose proces-

sor boards. It is being constructed at the Naval Rescarch Lab under the direction of Y. S.

Wu. The softwarc emulator ‘‘nodes’” are UNIX' processes which emulate the d-ALPS logi-
cal control protocol and use network facilities (TCP/IP) 1o communicate to each other. It is
based on a single node model written by the author and is being implemented on a collection
of workstations at Brown University. The emulators and prototype architecture can, along
with the architectural simulator and simulation environment, provide reasonably instrument-

able testbeds for analysis of and modifications to the high level control protocol.

Research and development of essential task distribution functions can be facilitated by
an expansion and integration of the support tools described in this thesis. Two of these
mcthodologies, static analysis and schedule simulation should be refined to facilitate iterative
investigations of the interaction between specific task definition parameters and mapping
parameters. Future work on application independent heuristics that have been developed

should focus on analyzing the feasibility (and cost) of distributed implementations.

Two directions for expansions of the analysis methodologies are proposed. The first is
a clarification and codification of the implicit performance criteria, such as reliability and sta-
bility. These criteria are central justifications for thc ALPS dynamic assignment approach
over more static approaches. Task distribution mechanisms that is not essentially random
have the potential of addressing some of the recoverability and reconfigurability issues that

are fundamental design criteria; those mechanisms will also be more sensitive to system

V UNIX is a rademark of AT&T/Bell Laboratorics

- 170 -

state. The sccond direction is the inclusion of more stochastic models of resource availabil-
ity and resource requircments. As a placcholder to this dimension, resource requirements
and essential system timings can be modeled as distributions around estimations. This
simplification should be viewed as a prelude to more statistical modeling approaches that can

be more representative of the operation of the underlying architecture.

APPENDIX A

d-ALPS High Level Logical Control Overview

Following arc the first three chapters of the distributed-ALPS Initial Design
Specification [Nctw87]. These chapters comprise an introduction to the distributed ALPS
approach and the specification for the high level logical control functions of the interface
control unit (ICU). The first two sections of this appendix provide an overview of both the
d-ALPS protocol model and the ICU structure. These sections were written by Prof. Dick
C. A. Bulterman. The last section providec a description of the high level ICU functions
and structure. This section was written by D. Leibholz. The /Initial Design Specification
contains additional chapters which describe in detail the ICU logical control memory ele-
ments, the detailed inter-ICU protocol transactions and functions and structures that are
grouped under *'ICU Low Level Control.”” Low level control functions and structures sup-
port data transmission, physical memory management and format conversion. These
chapters were not supplied in this appendix because they do not contribute to an understand-
ing of the scheduling and allocation issues presented in this thesis. The reader is referred to
the d-ALPS High Level Logical Control specification in [Lcib87] and to the entire d-ALPS

ICU Specification in [Netw87].

- 171 -

- 172 -

10.1. The distributed-ALPS Protocol Model

10.1.1. Architectural Characteristics

The deterministic nature of most DSP applications has made them suited to implemen-
tation on several classes of conventional architectures: these include fast uniprocessor archi-
tectures, in which each DSP function is encoded as a software or firmware routine, with the
processor's operating system providing a fast switching service {1]; a dedicated hardware
architecture, in which each DSP function is implemented as a hardware circuit, with physical
communication paths providing a system switching scrvice [2]; and a network of (relatively)
general-purpose processors and global memories, in which DSP functions are encoded as
software and firmware routines, bound to one of several processors based on the nceds of an
application, and in which data transferred between processors is buffered in high-speed glo-

bal queues [3].

d-ALPS uses a fundamentally different design approach. Instead of preallocating pro-
cessing components of an algorithm to a particular processor, processing is supported by
pools of special-purpose processors that are interconnected over one or more high-speed
(40MByte) interconnection networks. When a particular task needs to be accomplished, a
hardware bidding scheme is used to select a candidate processor from the pool to service the
needs of a particular logical (algorithmic) process. d-ALPS, which is based on the Altema-
tive Low-level Primitive Structures (ALPS) framework [4,5], is a fully distributed system
that provides the advantages of a special-purposc hardware structure while providing
improved reliability and reusability over dedicated hardware and prescheduled networks. It
has the following charactenistics:

o Interactions between processing componcents are not prescheduled;

e The structure of the interconnection nctwork, while biased toward a class of applica-

tions, is not bascd on a single application’s structure;

¢ There is some inherent reliability advantage over non-distributed approaches;

e The implementation is able to gracefully accommodate changing needs, albeit with
some modification to the particular configuration of the implementation; and

e The performance of the resulting implementation is comparable to that of a special-
purposc implementation (that is, the performance may not be significantly beter,
but it should not be significantly worse), assuming the same technology is used in

both . dses.

d-ALPS is intended to provide the designer of DSP applications with some of the potential
advantages of distributed architectures. First, by having component interactions that are not
prescheduled, changing configurations of a system can be accommodated more easily than in
a fixed interaction configuration. Second, by having a generalized implementation structure,
the system becomes reusable, both for a changing version of a single application, and across
applications of the same class. Third, by providing a recovery scheme for failed components
or busses, the designer is given an improvement in inhcrent reliability, allowing the imple-
mentation to be more robust (for the same designer effort) than special-purpose applications,
although at the cost of a sub-optimal implementation.! Fourth, graceful upgrades make a sin-
gle system extensible, so that changes in an algorithm may be integrated easily (although

perhaps not trivially) into a particular implementation.

d-ALPS uses a hardware-controlled distributed bidding mechanism, where processing
elements compete for the ability to serve a particular processing request. While a software-
controlled approach was considercd, the reality of many software bidding schemes is that

their implementation often provides an impediment to good performance [6]; since

! Although a distributed implementation is sub-optimal because of schcduiing overhead, we have found that
performance need not suffer significantly. Discounting the advantage of primitive-based technological improve-
ments, we have found that the simulated performance of d-ALPS compares quite well with other implementation
techniques. This is considered in scction 7.

-174 -

performance is crucial in our application domain, we decided to develop a hardware control
mechanism that was efficient (to allow the resolution of a particular bid in approximately -
450 nanoscconds) while keeping the system structure flexible enough to accommodate a

wide range of DSP applications.

10.1.2. The ALPS System Model

The Altemative Low-level Primitive Structures (ALPS) model represents one way of
taking a graph-based specification of a DSP algorithm and describing a system-level inter-
connection structure than can be used as the basis for an implementation. The ALPS model
was developed to strikc a compromise between the dedicated hardware and (reusable)
softwarc network implementation approaches for DSP systems. In the ALPS model, a
shared hardware primitive structure is used to approach the performance of the dedicated
hardware model by capitalizing on the processing node and communication-path idle time
inherent in most DSP applications. Unlike the software network model, which also attempts
to provide a shared approach to system implementation, ALPS uses a self-scheduling primi-
tive assignment scheme that eliminates the need for a (software) scheduling algorithm. This
implies that expense of programming (and verifying) the scheduling the interactions of pro-
cessing components can be avoided, and that ‘‘systems design’’ more closely models a

hardware building block assembly process.

A generic ALPS network model is given in Figure 10-1. The network is composed of

hardware primitives that are connccted to each other via three “‘circuses’":? a data circus,

which is used for high-speed transfer of data from one source primitive t0 one or more desti-
nation primitives; a control circus, which is used to arbitrate the primitive’s access to the

data circus—providing a convenient focus for scheduling activity in the network; and a

2 The term circus is used in the sense of an English roadway roundabout (traffic circle), and is not neces-
sarily meant to describe either a physical interconnection structure or a (chaotic) logical access protocol.

CRONG 7 s [

AN

Message Circus

Control Circus

e /)\ ———— Monitor Circus

Figure 10-1: An ALPS Network Model

monitoring circus, which is used to monitor the status of the system (including reliability
checks). Each hardware primitive is connected to the ALPS network by a standardized
Interface Control Unit (ICU). The combination of the ICU and the primitive is called a
resource. The ICU manages the interaction with the signals that travel through the circuses,
including directing the flow of information into and out of a either the ICU’s locoal memory,
or local memory of the primitive (if it exists). The hardware primitive portion of the
resource may consist of the implementation of a single logical primitive (such as a VHSIC
FFT processor), a collection of related primitives (such as a ‘‘vector’’ primitive that per-
forms vector addition, subtraction, multiplication and division), or a programmable processor
(such as a high-speed digital signal processing microprocessor in the class of the TI TMS-

320).

The interconnection graph of Figure 10-1 represents a single ALPS cluster. The model

allows for an expansion to multiple clusters when a single cluster of circuses and resources

- 176 -

can not support the bandwidth required by the application. Each such cluster may contain
all or some af the resources types defined in the application graphs. Clusters communicate -
with cach other via inter-cluster controllers. Multiple clusters may also be used to provide
additional relisbility in the system. Beyond noting their cxistence, however, thc ALPS
model does not define any partitioning or allocation rules for separate clusters. For example,
cach cluster may have onc or more instances of a particular resource type, with the number
of resources used being a function of the original flow graph and the characteristics of the

implementation environment and requirements.

In the ALPS modcl, resource access is spread across a sct of special-purpose primi-
tives. This allows single copies of a resource to be shared by various logical primitives of
the same type in the initial system graph. The process of developing an ALPS-based imple-
mentation model for a particular algorithm consists of balancing the utilization of a shared
communication facility with the utilization of individual system resources. If the ratio of
communication-time to processing-time is low, then a relatively low-bandwidth communica-
tion facility can be used to interconnect relatively many resources. If the ratio is high, then
a higher-bandwidth communication facility is required, or several disjoint clusters may need

to be defined.

10.1.3. ALPS Implementation Concerns

The basic structure . the ALPS model allows it to be implemented as a (static) net-
work or a (dynamic) distributed computing system. For a given DSP application, a static
implementation would pre-allocate the required number of processing nodes of each primi-
tive type based on an analysis of circus contention. This approach would be similar to that
reported in {7,8] and structurally similar to that of the processor network, with the exception

that scheduling control does not come from a control program but from the interactions of

- 177 -

the resources. A distributed implementation would function in a similar way, with one
impontant exception: the distributed implemcntation, with dynamic rather than static resource
associations, could permit spare resources to be placed on the network that could be used to
transparcntly take the place of some failed nodes during system execution. Unlike the static
model, this substitution would not need to be preplanned, but could be done on a demand
basis without altering the function of the bidding scheme. Note that not all failure modes of
the distributed system could be accounted for in this manner—only the isolated failure of
one or more resources. Any further fault-tolerance must be explicitly encoded in a high-

level protocol.

d-ALPS uscs a dynamic scheduling protocol, which can be summarized as follows: just
before a node finishes processing the data it had received earlier from its input queue(s), it
sends a message on the control circus inviting all resources of an appropriate type to bid for
being the designated recipient of the source node’s data. The first resource responding to the
bid (i.e., the first resource of the appropriate type that responds to the allocation request)
becomes the target instance for the corresponding graph node. If no resource responds, the
data is queued (either locally or globally, depending on the implementation) until a target

resource is ready.

Although the bidding scheme allows any node of an appropriate type to act as the
instance that carries out a logical graph function, this can create two potential problems:
First, since a DSP application graph has nodes that are able to accept multiple input arcs
(i.e., connections from multiple other nodes), the d-ALPS implementation must be able to
synchronize requests initiated in various nodes to insure that they are all serviced by a single
target resource. For example, if two resources (representing different sending nodes) each
separately ¢:nd out bids for a common target node, then the allocation of that target node

needs 1o insure that a single recciving node will process both requests. Second, there is no

-178 -

inherent frame synchronization mechanism in the ALPS structure: an output data frame is
sent from one resource to the next as soon as a target resource can be found (and as soon as
the data circus is available). Any delayed frames are q.cued for later transmission, but there
is no guarantee on the maximum delay that can be incurred. This means that there is no
inherent mechanism to insure that all data is sent in order, since a subsequent frame may be

processed and ready before the current frame has a chance to be processed.

In order to address the first problem, the design environment that is used to encode the
graph-bascd representations of the algorithm requires the designer to define a priority link;
this link, which can be any one of the input arcs into a node, determines the actual commit-
tal of a physical node. If non-priority links make a request for a resource’s services, they
arc masked until the priority link makes its request. As will be described, each scheduling
message carries a desired-node type, the requester’s logical ID in the graph, and a frame
identifier; this allows queued requests to be resolved to their proper target nodes. The
second problem is addressed by providing an integrated system simulation environment that
allows the user to determine the amount of queueing of requests in the network, and to
determine if enough computational and communication resources exist to accommodate the
demand. The design and simulation environment is described in the collections of articles
placed under the heading ‘‘Design Environment’’ in the References and Bibliography section

of this report.

10.1.4. A Distributed ALPS Interconnection Network

The d-ALPS implementation model consists of a collection of one or more clusters,
where each cluster is responsible for executing either all or part of the DSP application
graph. Clusters may be interconnected in a number of ways to allow them to be used as

components of the system functional pipeline, or the may be connected so that they execute

- 179 -

functions in parallel. The partitioning of an algorithm among clusters is highly algorithm-
and application-requirements dependent. There are a number of general partitioning con-
siderations, however, that apply to all applications. In practice, the connections between
clusters require special purpose gateway resources. In addition, the achievable data rates
between clusters is typically an order of magnitude slower than the data rates between
rcsources within a cluster. Thercfore, it is desirable to minimize the amount of inter-cluster
communication in order to prevent commuiication bottlenecks and to minimize the overhead
costs of having multiple clusters. (The overhead results from the required gateways and the
interconnections between them.) In general, maximum system utilization is achieved by
minimizing the number of clusters. Note that the amount of processing that is possible
within a cluster is limited by the resources allocated to the cluster (although this is
configurable) and the bandwidth of the intra-cluster network. Inter-cluster design is also
affected by the reliability requirements of the system. Multiple clusters and/or multiple com-
munication paths between clusters can be defined in order to provide redundancy in case a

cluster becomes either disconnected or fails intenally.

In this presentation, we will consider only single-cluster implementation network
models. Figure 10-2 shows the components of a single cluster. Since a cluster may need to
“support a large number of resources (on the order of 200), the cluster structure is segmented
into a collection of subbusses. Each subbus is connected to a subbus backbone via a
repeater stage. Again, this segmentation is solely required for electrical constraints and may
be omitted if the number of resources is small. That is, resources or gateways may either
attach to a subbus or directly to the subbus backbone. Attached to cach subbus is a sub-
group of the resources used in the cluster. There is no significance (other than for reliabil-

ity) to where a resource should be placed within the cluster or within a subbus.

- 180 -

Subbus backbone

=
Gateway
1o inter-cluster
packbone »
3
&

Figure 10-2: A cluster and its components.

10.1.4.1. Intra-Cluster Network Design

The fundamental limit in the performance of ALPS-based implementation models is the
time used to schedule and implement the transferring of information among resources. This
means than the intra-cluster interconnection network must efficiently support two tasks: the
transfer of control among resources and the transfer of data among instanced resources.
Control information is used to support the dynamic assignment of logical primitives to
resources; this assignment is made when one instanced resource needs to send data to
another resource in the cluster. Control delay is a combination of both the ICU decision
time as well as the time to transfer the required messages between resources in the network.
It is important to be able to minimize the control overhead since that time represents

resource idle time and therefore lower resource utilizations.

The data transfer task of the network is used to implement the movement of data
across the logical algorithmic links between logical primitives, thus defining logical channels
between resources. As 15 typical with loosely coupled systems, the data transfer between
processors can casily become a system bottleneck. A real-time task for a particular algo-

rithm requires that a specific amount of processing, and therefore a specific amount of data

- 181 -

transfers, must be accomplished within cach specificd time period. Since more processing
power can be added by simply adding resources, the ability of the network to transfer the -

data in the required time becomes the limiting factor in the model.

The topology that defines both the control and data paths within a cluster impacts the
eficctive communication bandwidth, the number of resources (and therefore processing
power), and the reliability of the cluster. Unfortunately, each of these aspects is best served
by a different topological structure. Our distributed implementation uses a single control bus
architecturc and a multiple data bus architecture. All data transfers are performed using
DMA-style burst transfers between the queues of a source resource and one or more destina-
tion resources. The transactions that occur on the control bus establish virtual circuits that
last for one data frame (one block transfer). Once the virtual circuits are established the data

busses can be used as simple DMA channels.

10.1.4.2. The Interface Control Unit (ICU)

Figure 10-3 shows the general block structure of an ICU and its connections to the net-
work and its primitive.3 The ICU 1s based around the message control unit and the data con-
trol unit. The message control unit provides the central control for all of the ICU opera-
tions. The data control unit is a slave to the ICU, although it does execute its functions in

parallel.

Media access is implemented by allowing a single ICU to be in control of the message
bus at a time. The arbitration of control is accomplished by using a (fast) token passing
scheme. The ICU is primarily responsible for passing control from one ICU to another and

coordinating the bidding for receivers for the data on the output queues. The decisions ot

3 Rectangles with rounded comers represent control units and rectangles with square comers represent
memory units. (Note that connections between blocks primarily represent data paths and control connections are
generally implied.)

- 182 -

1 |

l Prmitive (ntertace I

Receve “ {F Queues prm Intentace Format

Tah'a Table Convener
Instance] State
Tah'n Into

1|

Pregram | 104 Conteyt) [‘
Store Memaory 2 [
% HAT
b Prim % ICU Main Memory
icu ocu 1 3 (for ata biocks and
= Control o] CR < parameter table)
O Ll fuores S =z
e c 5
- Cur
=9
2 o
[} (2]
o o

[

[McuBurer] [DCU Buter

ot =L

Figure 10-3: The ICU block diagram.

how to create requests for links and whether to accept requests is based on information con-
tained in the transmit and receive tables, respectively. In general terms, these tables contain
a complete description of the connectivity of the algorithm which is used to determine the
dynamic connectivity of the implementation. The parameter table provides information
specific t0 a particular instance (algorithmic nodc) for the execution of the primitive. The
three tables are generally down-loaded at system startup time. It is possible, however, to
send update messages to any of these tables during run-time—allowing, for example for an
operator to control application parameters that may need to change during the operation of

the system. The usc of lookup-tables makes it possible to quickly perform the dynamic

- 183 -

mapping of instances onto resources. For example, using the receive table, an ICU can
decide whether 10 accept a link in a single control cycle. Similarly, an ICU can generate a -

message to request bids on a link in a single cycle.

The physical primitive acts as a slave to the ICU. It begins execution after the ICU
logical control has determined that all of the required input data has been acquired and is
stored in the local queucs. When the primitive has completed its computation and has
placed the output data back in the queues, it then signals the message control to transmit the
data to the next logical node in the algorithm. The primitive interface to the ICU is through
the shared memory of the parameter table and the queue storage unit. The shared memory
interface makes it relatively simple to incorporate new primitives so that resources may fol-
low technology advances. The shared memory interface also provides a means to load
instance-specific parameters from the parameter table. Further, the primitive can use the
queue storage as if it were local memory since there will be no contention from the ICU
during primitive execution. Alternatively, the primitive may copy and work with the data
within memory that is more tightly coupled to the primitive. The primitive would then need

to write its resultant data back into the queue storage after completing its processing.

The data control unit is responsible for both transmitting and receiving data from the
network at the request of the ICU logical control. The data control unit performs block
transfers of a particular block in the queue storage to other DCUs. In versions of the ICU
that use multiple data busses, the ICU uses a bus number that is transferred at the end of a
message transaction to determine which bus to listen to for the input data that it has agreed
to process. A transmitting ICU can choose a data bus by examining the data bus busy sig-
nals and selecting the first free bus it finds. (Note that single-bus systems do not need to
spend the extra control time to select and decode busses in use, at the cost of reduced sys-

tem bandwidth.)

- 184 -

As data passcs between the primitive (or parameter table in some cases) and the queue
storage, its format may optionally be converted to match the format of the primitive. These -
conversions include both precision and format. The format converter serves two purposes:
cnabling heterogeneous primitives to work together in the distributed system, and compact-
ing data to minimize the amount of data transferred. In general, the format converter will be
uscd to transmit data in the most compact form without loosing precision. For example, an
IIR (infinite impulsc response) filter may intemally perform its computations in double preci-
sion floating point format, and then transmit its output link using a single precision fixed
point format to a display. By placing the format converter between the primitive and the
quecue rather than between the queue and the network, the data compaction can also be used
to minimize the required queue size. Another rcason not to place the format convert
between the queue and the network is that the period of some conversions will be greater
than the period of the word transfers. Placing the converter on the primitive side isolates the

network from the conversion time fluctuations.

Whenever the queue storage is addressed (by the data control or the primitive), all
addresses must be mapped using the address manager. This address mapping is used to
reorder data within a block as well as to locate individual queues within the bulk of queue
storage. One example of the use of address mapping could be to reorder the input sequence
to an FFT operation. Arbitrary address mappings can be performed by using an indirection

mapping table that is particular for each primitive type.

The ICU must support three basic functions: it must receive data from other resources,
it must control the processing of its attached primitive, and it must transmit the results of
that processing to other resources within the system. The initial state and the idle state for
the ICU is the receive state. The ICU logical control unit is used to implement most flow of

the finite state machine.

- 185 -

For standard resource types, the reccive state machine constantly reads the message bus

and decides whether it should accept the current link and frame number pair* that was most -

recentty transmitted. When the ICU logical control unit decides to accept a link it uses a
fast polling protocol described below to bid to accept the link. Once all of the required
input links for the finng of an instance have been read, the reccive state machine signals the
primitive to start execution according to the parameters that are currently being addressed in

the parameter table and using the data found in the queue storage unit.

When the primitive has completed its exccution and the output data is left in the data
queues, it signals the mcssagelcontrol unit; this unit first attempts to acquire control of the
message bus using the round-robin control passing protocol described in the section below.
Upon obtaining control, the message control transmits messages for each output link for the
current logical output port and listens for acknowledgements to the request. If a link is not
accepted by any receiver, then that link is added to the list of locally queued links pending
transmission. The use of a local queue means that global access to a single system-wide
queue is avoided, saving transmission cycles on an alrcady busy bus. Once all links for the
current output port have been attempted, a free data bus is chosen. The selected bus number
is then transmitted on the message bus and then the data control unit is signaled to carry out
the block transfer. Once the transfer has been started, control may be passed to another

ICU.

4 An ICU presents a request for bids to accept a link by ransmitting the link number and a frame number.
The link number uniquely identifies with which link in the algorithm the data is associated. A receiving ICU
uses the link number w index its receive table and use the output information to in part determine whether the
link should be accepted. The frame number is used to match epochs of data. An instance that requires muliple
inputs will only accept links whose corresponding frame numbers match the frame number of the first link ac-
cepted for that instance. In general, frame numbers are assigned at sensor nodes when frames enter the system.

L IR CHEA

Lt A

- 186 -

10.1.5. Detailed Descriptions: An Overview

Detailed descriptions of the various functions of each component of the ICU and a -
general ICU input format is presented in chapters 4-11 of this report. The descriptions are
divided into three logical groups of ICU functions: High-Level control, describing the logical
ICU protoco!l and its support implementation (these arc considered in chapters 4-6), Low-
Level control, describing the bus structures and the message and data control sections that
directly use these structures (these are considered in chapters 7-9); and Auxiliary control,
describing the memory manager and format converter functions (these are considered in

chapters 10 and 11).

10.2. Interface Control Unit Structure

10.2.1. Overview

In this section we provide an overview of the structure of the ICU. This structure will

serve as a ‘‘road map’’ through the remainder of this specification.

Each of the headings below represent an ICU logical or physical block. Some of these
blocks will be implemented as concurrent hardware processor blocks, while others will be
(initially) implemented as software modules in a centralized control processor. An indication
of the proposed implementation strategy is given with each heading; justifications for each

decision is given in the complete description, below.

10.2.2. Inter-ICU Bus Structures

This specification restricts itsclf to a single cluster of ICUs, each of which is attached
to a single processing primitive. The ICUs are connected to each other by two classes of

interconnection busses: the message bus and the data bus.

T

- 187 -

10.2.2.1. Data Busses

There may be up to four data busses specified in the d-ALPS architecture. Each data
bus has a 16-bit paralicl data path, plus control lines. The control lines are used for clock-
ing (although the bus can also be used in a non-clocked mode) and error control. The data
rate of the bus is specified as sending one 16-bit word between any ICU pair within a cluster

in 125 nanoscconds.

10.2.2.2. Message Bus

The message bus is used to support two type of activity in the d-ALPS architecture:
logical control synchronization among ICU (through a hardware bidding protocol) and
status/initialization processing. The message bus supports asynchronous transfers and has an

8-bit wide data path.

10.2.3. Low-Level Transfer Control

Access to both the data and message busses is controlled by the low-level transfer con-
trol portion of the ICU. This control is divided in to two separate, concurrent units: the data
control unit and the message control unit. The current protocol makes extensive use of the
notion that these units are implemented as hardware-based blocks. The bidding protocol
used to assign control among ICUs, for example, will only be successful if the classical

delay associated with microprocessor-based implementations can be avoided.

10.2.3.1. Data Control

The data control unit implements the logic to control data transfers between ICU pairs.
Once the source and destination of a transfer are established, the data control unit provides
for the error-free transfer of data in a DMA-style block transfer mode. While single-word

blocks can be sent, the data control unit is structured to provide efficient services for larger-

- 188 -

sized blocks (typically in the range of 1K-10K words). The data control unit also maintains

status information that is used by the testbed to instrument the d-ALPS implementation.

10.2.3.2. Message Control

The message control unit transfers four types of messages between ICUs within a clus-
ter: initialization messages, status messages, network control requests, and algorithmic node
bindings. The description of the uscs of these is beyond the scope of this chapter; it is

addressed more fully in chapters 7 and 9.

10.2.4. High-Level Transfer Control

The ICU’s high-level transfer control is a logical control service that manages the
response of L« ICU to messages and data transfers on the network. It is at this layer that
the essence of the d-ALPS protocol is based. Note that this control does not include the bid

resolution process, which is a low-level control function.

10.2.4.1. ICU Logical Control

The logical control block manages all data transfers within a particular ICU. It con-
trols access to the memory server on the ICU, notifies the format converter of any pending
conversions, and notifies the primitive when all of the input queues for that primitive are
already. The logical control portion of the ICU is implemented using a conventional

microprocessor architecture; it is described in chapters 4, 5, and 6.

10.2.5. Data Queue Management

In order to provide a common block and word buffering facility for both the data con-
trol portion of the ICU and the primitive itself, the ICU also contains a memory management
unit. The purpose of this unit is to manage the allocation of data queues, and to manage the

access to those queues by the primitive and the data control portion. The memory

- 189 -

management unit is implemented as a block of 100 nanosecond memory, and a control logic
block that manages contention for the memory. The memory manager is discussed in -

chapter 10.

10.2.6. Format Converter

The final block of the ICU is the format converter. The format converter is an optional
component that can facilitate the conversion of several data types, such as integer to floating
point, or two's complement integer data to unsigned data. The purpose of the format con-
verter is to both offload the processing that a particular primitive may have to perform, and
to make a test-bed system more general, by allowing primitives of several different types to

be supported. The format converter is described in chapter 11.

10.3. ICU High-Level Control Architecture

10.3.1. Basic Structure and Architectural Decisions

The ICU Logical Control (hereafter called simply ICU Control) is responsible for mon-
itoring and controlling the support hardware facilities so that the ALPS communications pro-
tocol is implemented and the internals of the ICU operate and interact in an organized
manner. To these ends, the ICU Control is considered an autonomous, single point of con-
trol which has available to it special purpose facilities which, once given commands, operate
concurrently and share resources in an agreed upon and controlled manner. Each of the sup-
port facilities, the message control unit (MCU), data control unit (DCU), format conversion
unit (FCU) and memory manager (MM) provide control interfaces to ICU Control which are
essentially command-oriented. The ICU Control issues one of a set of commands to the
units and some simple handshaking and status lines indicate the completion and status of the

tasks. The data and message control units have buffer interfaces for the exchange of infor-

- 190 -

l mation wit.t other ICU Controllers on the network. The ICU Control, as a central controller,
operates scquentially and has primary access to node status and state information. The - -
justification for a sequential controller of concurrent opcrating components follows by exa-

mining the basic implementation altematives in terms of the sometimes competing interests

“ of instrumentability, scalability and accuracy of the model.

The structure of the ICU Control unit is illustrated in Figure 10-4.

1 | |
L Pnmitive (ntertace]

Recewa IF Queve ||| '™ Intertace Format
Tave Table Converter
Instance l State
Tak'a Info

Program | oL Comeat '
Store - Memory I l
Pnm/ | § 1ICU Main Memory
Dcu 3 {for data blocks and =
CR <2 parameter table)
£
>
1
@

92epaiuf NIN

[ooeuawn nocﬂ [jwvalw ww] '

Figure 10-4: ICU Logical Control Structure

- l\FM_cluer@ @ueu«er;?l '
f =T Tz ;_
J
l
l
'

- 191 -

While the implementation of a centrally-based control unit presents obvious bottlenecks
in speed and complexity, many of the decisions that arc made by this unit are inherently -
sequential in nature. The information that is manipulated by the ICU Control is gathered
from locally distributed sources; delays in obtaining current status information is minimal.
The principal advantage of using a centralized controller is that it facilitates the development
of a d-ALPS testbed, where experimentation of different high-level protocols and instrumen-

tation of ICU activitics are highly desirable.

Note that although justification cxists for having a central ICU Control processor, this
does not extend to the cntire JICU. In other words, while the ICU Control will operate
sequentially, the support functions of the ICU and the primitive must operate concurrently.
A single, serial ICU controller implementation is insufficient to accurately model the current
d-ALPS protocol, since it would incur significant operational delays that would not occur in
a gencrally-concurrent ICU. Furthermore, a fully serial implementation (i.e., one that is
based upon a microprocessor which fully controls activity on message and data busses and
which implements low-level memory management) would not be a scalable one, in that it
would not resemble the physical structure of the actual ICU operations. The design deci-
sions involved in a microprocessor-based ICU would not reflect similar decisions that must
be made for an operational system based upon concurrent functioning ICU components.
Designing this type of system would then be in isolation of the problems of contention and

control faced when designing the next system.

Our current plans for the control portion of the ICU call for a microprocessor with a
small amount of local memory. The processor may access and monitor a set of support
facilities via memory-mapped /O interfaces to finite-state machines (FSMs) which direcdy
monitor and control the above mentioned support facilities. With this approach, changes to

the essential protocol and the status and initialization messages can occur without affecting

the interfaces to the underlying support facilities. Such changes would consist of a repro-
grammed Logic Control microprocessor. As the protocol evolves and the instrumentation -
requircments recede, the central control microprocessor can itsclf become a simple finite
statc machine, issuing simple but powerful commands to interface FSMs. The state informa-
tion is then distributed and copied to the local FSMs and integration of this information is
minimized to operational necessity. The advantage of this approach is that the parallelism in
the protocol decision-making points can be enhanced and concurrency of operations, once it

is identified in a final protocol, can be facilitated.

10.3.2. A Description of Essential ICU Control Functions

The implementation of a d-ALPS-based protocol relies on the passing of data blocks
between heterogencous special-purpose primitives in such a way that a signal processing
algorithm is executed. To this end, the current protocol uses a dynamic scheduling and
assignment of these primitives in that a primitive is scheduled to operate on a particular
epoch of data as the data becomes available, and the physical primitive that is chosen is not
predetermined. The central justification for the dynamic scheduling approach is that it
avoids the need for a central controller and avoids the synchronization problems that occur
when unexpected delays or dead nodes occur. Dynamic assignment offers fault resilience by
allowing any capable node to accept data instead of relying on a predetermined and possibly

dead node.

The requirements that these concepts place on an interface control unit in a
distributed-control environment aic support for the ablility to assume the role of any algo-
rithmic instance that requires the node’s attached primitive and the ability to stage a bid for
the next recciver of data that has been processed. These are the essential protocol-related

functions of the ICU. Unfortunatcly, while these functions are conceptually clean, their

- 193 -

implementation must be based around a systcm in which lower-level concerns such as
memory management, higher-level support for data queucs, and general initialization and
monitoring functions must also be supported. The support functions can be divided into two
basic groups: protocol-based support functions and extra-protocol support functions.
Protocol-based support functions of the ICU Control provide the basic implementation of the
protocol’s funcuonality. Extra-protocol functions are support operations that facilitate the

initialization, modification, and monitoring of a functioning system.

10.3.2.1. A Overview of Protocol-Based Support Functions

The principal functions of the ICU are the sending and receiving of messages and data
to assign nodes as algorithmic instances. The operation of an ALPS system will typically
involve passing as much data through the system as can be handled. It is expected that in
the normal casc, data will be pipelined -- data blocks generated at different times will be
processed by the system. The interarrival time of data into the system is guided by the
application domain, and the performance requirements of the actual application architecture
may be specificd in terms of system latency and system throughput. System latency is the
time a frame of non-processed data enters the network at a source subtracted from the time
the processed data block rcaches a network data sink. System throughput is the number of
frames per second that enter and exit the network. In general, the latency will be
significantly larger than the interarrival time, but the throughput will will generally match the
interarrival time. The impact of these operational characteristics on ICU function is that any
particular ICU/Primitive pair, or node, must be classificd not only by which instance it is
currently assuming but which time-slice, or frame, it is currently processing. A node then
operates on an instance/frame, a time and algorithm based description of a subtask per-
formed by an individual node. The ICUs must negotiate the fate of multiple frames of data,

seeing 10 it that the signal processing algorithm is performed over pipelined data.

< 194 -

A second operational characteristic of this protocol is that data that has been partially
processed must be queued while resources are unavailable. Since an allocation of processors
may not and, in gencral should not be overly generous in that processors are always avail-
able to bind to instances, data shouid be stored in an organized manner and actually sent
over the network only when a receiver is found. Furnthermore, the limited data channel
bandwidth poses a communication botdeneck which results in the temporary buffering of
data while other transfers are in progress. The cffect of the queueing and buffering of data
is that both communications channels and processing sites should be considered system
resources. The are two cases of data buffering: transient buffering and recurrent buffering.
Transient buffering results from processing errors, data transfer errors or node losses (loss of
synchronization); recurrent buffering results from a particularly lean allocation of resources
that still meets system throughput and latency requirements, or high contention for data
channels due to. algorithm demands and the synchronization demands that can occur when
data frames are pipelined. As long as there are sufficicnt resources to overcome either tran-
sient or recurrent buffering, the system should tend towards a steady state and the protocol
should gracefully handle local queueing of data and dynamic changes in the load on those

queues.

The remaining essential functions of the ICU Control are to facilitate the processing
primitive’s access to data. When an ICU accepts a bluck of data it must allocate physical
memory for the data block and logically integrate that block with other blocks that refer to
the same instance/frame and with other instance/frames of data. The memory allocation task
also involves providing the primitive with a straightforward view of data blocks with which

it is currently concemed.

The allocation issues become a bit more complex depending upon the source of that

data. In the standard paradigm, data is transferrcd from one single purpose primitive to

another. In a more general model, and one which is supported by this protocol, primitives
arc multifunctioned and may in fact be able 10 receive as input the data they have just pro- -
duced. The ICU should allow the co-location of output and subsequent input data via simple
memory allocation techniques. The advantages of this are a possibly reduced set-up time for
the subtask (provided that the co-locating requires little time in comparison to allocating new
blocks of memory for data coming from an extemal source), and reduced contention for the
data channels. For the case of a single link between the destination and source, a savings of
the time for that block transfer is realized as potential access time on the data channel by a
different pending transfer. This savings will not always be realized, as it depends on the
application algorithm, the processing and communication resource allocation and the pipeline
synchronization, and the load on the system. The disadvantage is that this does add com-
plexity to the underlying protocol and the actual implementation may preclude some
modifications of the protocol. It is believed that this additional complexity is worthwhile
given the current view of the central control structure of the ICU and the potential data

channel savings, which are highly valued.

The data itself may be stored in one of several standard data formats. The data for-
mats may differ not only in concept, i.g. floating point vs. integer, but in size: four bits for
some formats vs. sixteen bits for others. Thus a format conversion must be performed if the
network is to support primitives which operate under differcnt formats or if the network will
support signal processing algorithms which by necessity require different data formats at
different points of computation. The additional support for data compaction or expansion
would allow savings in data channel usage under certain conditions. If a data word for a
particular application has only four bits of precision, it could still be stored and transmitted
within the network and node standard sixteen bit word, but could be stored and transmitted

more efficiently if four of these words are compacted into one sixteen-bit word. The com-

- 196 -

plexity of then managing the primitive’s view and access of these compacted words would
have to be incumred but the savings of data channcl time might be worth it. The ICU Con-
trol causes a format converter to perform format and expansion or compaction conversions

on data is read or writicn into memory by the processing primitive.

As processing primitives may be multipurpose and in fact may be able to assume a
variety of types, the ICU must have knowledge of the capabilities of the primitive, choose
the comrect current primitive function and provide the primitive with knowledge about its
current configuration. The information pertaining to a primitive’s current function is col-
lected in a table called the parameter table. The ICU must provide the primitive with a
reference to this table so that it may collect and follow its operating guidelines for the
instance it is currently assuming. After parameter information is provided, the ICU Control

causes the primitive to begin execution.

10.3.2.2. A Summary of Extra-Protocol Functions

The ICU Control must undertake operations which are necessary to initialize an ALPS
system, monitor the performance of individual nodes and communications resources, and
maintain its running state. In addition, it must coordinate the operation of support hardware
and provide specific directives and handshaking so that concurrent operations can be

managed.
Injtialization and Monitoring Functions

There are two classes of initialization functions. The first is the system and task infor-
mation uploading class. The second is the intra-ICU setup function class. Each of these is

considered in the following paragraphs.

Individual nodes must be informed of the overall task, the signal processing algorithm,

by providing a logical interconnection table which includes information about how each

- 197 -

particular primitive type can participate in the overall task. In addition, a references which
give details about the production of data by each node must be provided so that the ICU can -
match the correct primitive output blocks with the outgoing links. Providing the primitive
with system information also includes the assignment of logical addresses so that each node
knows how it will be addressed by other nodes in the systcm. Each node will not have a
list of node addresses and primitive iype associations because ihe¢ communications among
nodes will take place first across cntire classes of nodes; specific nodes will then be selected
within that class by querying over broad categories. The rationale here is that all protocol
related functions which cause one physical node to address another are based directly on a
priori additional information about the node. The dynamic assignment and scheduling
heuristics predicate that specific addresses of nodes operating on certain data will not be
known in advance and querying for information over all cligible opcrators will be necessary
before focusing on an intended receiver. In addition, the concept of pools of similar
resources dictates that the pool be treated similarly. The concept of querying for the node
which is currently performing (or has previously performed) functions of particular interest,
and then finding the address of that node, is consistent with the dynamic assignment view.
Unique logical addresses are therefore assigned to each node but the nodes are not given a

direct view of the addresses of other nodes currently operational on the network.

The second class of initialization functions are intra-ICU set-up functions. Assuming
the general signal flow algorithm is known, the ICU Control must initialize the state of data
queues and support hardware so that their view of the state of the node is consistent. This
involves sending functional reset commands and initializing various state and bookkeeping
registers. A final initialization task is to upload and maintain a parameter table which gives
the processing primitive detailed information about its function during each mode of opera-

tion.

- 198 -

System maintenance functions performed by the ICU Control allow individual nodes to
sct operational parameters and houseclean. A system monitor node may query ICUs for -
status information ecither for statistics gathering reasons or to ascertain the health and status
of nodes and data. The status queries may be followed by commands to throw out old data
or change the priority of tasks. The importance of these functions is twofold. First, moni-
toring the performance of individuai nodes without greatly perturbing the systcm provides a
usable level of instrumentation. Status queries could be staged at times in which the perfor-
mance of the system is not affected at all, provided the monitoring node is given sufficient
information about the system and protocol. The statistics gathering capability is one of the

central justifications of building a test-bed system.

The second function of status queries is to aid in runtime parameter modification and
garbage collection. The intention here is to provide either a balancing of access or syn-
chronization by modifying the ceilings on data queueing and by selectively pausing node
operations. Some of these facilitics are not part of the current protocol, as the purpose and
tasks of an invasive runtime optimizer will depend on situations that are discovered once the
system is operational. Providing these facilities at this development stage will allow for
future integration of this monitor as well as future implementation of distributed monitoring

and optimizing heuristics.
Internal Interface and Mapping Functions

The ICU Control must engage in interface functions so that the operational sections of
the ICU can be initialized and told what to do and when to do it. Mapping functions per-
formed by the ICU Control allow these sections to share a common view of current data and
algorithm information. In particular, the ICU Control must provide references to the
memory manager so that it can in context translate data block-relative memory access

requests by support hardwarc into physical memory references. It must also provide

- 199 -

contention resolution among devices sharing memory or state information so that the proto-
col algorithms arc accurately implemented and contention is resolved in favor of tasks which
have definable and justifiable priority. The details of the interfaces between the ICU Control
and support hardware will be cxplored later but what follows is a brief functional description
of these interfaces in terms of initialization and operational information and commands that

must be presented to these units.

Message passing across the network is undertaken by the ICU Control and facilitated
by the Message Control Unit (MCU). Commands to the MCU to send and receive address-
ing information followed by the actual message are presented by the ICU Control and simple
handshaking indicates the success or failure of a recciving node to accept the information.
The MCU also performs token and link bid operations, with the ICU Control supplying the
essential commands for the auctioner and the decisions to the bidders. Sample commands to
the MCU are: write message, rcad message, ignore incoming messages, engage in a bidding

process, initiate a bidding process.

The interface to the Data Control Unit is similar in structure to that with the MCU.
The DCU is responsible for monitoring the data busses for activity and engaging the down-
loading and uploading of blocks of data to and from the memory module. It is command-
driven but the read/write buffer which connects to the data busses is accessible only by the
DCU and the memory manager: the ICU Control can not read or write information to or
from the data busses. Sample commands to the DCU are: begin DMA transfer from data

bus X to memory, begin DMA transfer from memory to data bus X, find next free data bus.

The memory manager receives commands to allocate fixed sized pages of memory and
attach pointers to these pages to data queues. It then receives sequential or random refer-
ences to these qucucs and presents all data in a queue as a continuous block of memory. In

addition, it maintains a mapping of qucuc numbers to logical port numbers for the primitive

- 200 -

so that the primitive specifies the logical port number and the memory manager accesses the
corresponding date qucue. Additional mapping allows the ICU Control to specify the queue
from which the DCU will interact. Finally, the paramcter tables will be stored on separate
data queues, onc for cach mode the primitive can assumc (intemally, each primitive is
indexed by mode) and the MM will contain a mapping of queue number to primitive type.
The ICU Control is responsible for commanding the MM io allccatc pages and then attach
them to a specific queue. It also commands the MM to destroy a queue, deallocating all
associated pages. The ICU Control can not actually access the memory pages; its function is
10 set them up and then control competing access to them between the primitive and the
DCU. To accomplish this, a hardware lockout structure prevents the MM from honoting a
read or write request while the DCU is operating is controlled by the ICU Control, since it

is responsible for causing the DCU to operate.

The format converter translates data from its current format to a format used by the
primitive while it is operating in a particular type/mode. The ICU Control will instruct the
FCU 1o perform a read-conversion as words are read from memory by the primitive. The
FCU will also deal with compaction/expansion of low-resolution formats, i.e. four bit words
can be packed four to a sixteen bit word. In this case, since accessing of data through the
memory manager must be in sixteen bit chunks, the FCU will fetch and buffer once for
every four sequential accesses. The interface to the FCU is very simply a command to
specify the read-conversion and a separate one for write-conversion. The FCU then acts as

an intermediary for memory access by the primitive.

10.3.3. ICU Logical Control Operational Summary

Following is a summary of the activities initiated by key inter- and intra-ICU events.

These events arc: message reccption, primitive finishing and deciding to seek a next con-

- 201 -
trotler of the message bus.

10.3.3.1. Activities Initiated By Message Reception

Message reception initiates activities to first decide whether the message pertains to the
node, then determine the esscntial type of message: whether it is a bid message, an intra-bid
message, a pass control message, an initialization message or a status query. The node then
reads supplementary information in the data portion of the message and processes the

request or query.

10.3.3.1.1. Requests to Send a Link

Requests to send a link require the receiving node to determine whether it can accept
that link. This determination is based on the current state of the primitive, the availability of
memory, and the current instantiation 6f the node. The activities that occur are the internal
status checking and then decision to take part in a bidding process for the link. The bidding
process is undertaken by the Message Control Unit. If a bid was successful, the node will
be either be instantiated to the receptor site of the link it has accepted or it will have
already been instantiated and will remain so as additional links for that algorithmic instance
are reccived. Once all data for an instance has been received, the ICU will instruct the

primitive to execute.

10.3.3.1.2. Requests to Pass Control

A node will want to control the message bus if it has data to send to other nodes. The
current controller, after utilizing the message bus for a proscribed number of transactions,
will seek to pass control by sending a pass control bid notice and subsequently controlling a
bidding process to find the next controller. Recciver nodes, upon receiving this bid notice,

examine the contents of data quecues to determine if it has information to send. If it does,

- 202 -

the ICU Control will cause its message control unit to engage in the bid for the control
token. If the node.is chosen as the next controller, it will assume clocking and sequencing
responsibilities for the message bus and will subsequently use the bus to send link bid

request messages.

10.3.3.1.3. Initialization Messages and Status Queries

A monitor node will gain control of the message bus in order to send initialization and
sct-up commands to processor nodes. These messages will be received by processor nodes
and appropriate internal queries and value changes will be initiated. A node can not refuse
to answer or accept an initialization command unless the command places unreasonable
demands on the node, such as a command to allocate an excessive amount of memory. The
activitics initiated by initialization messages can include changing the state of the associated
primitive, clearing and initializing data queues, and receiving new signal flow algorithm
maps. The activities initiated by status query messages include requiring the ICU Control to
make appropriate references to locally distribute sources: ICU local memory, support
hardware or the primitive, and resolving the query. A message is then returned to the moni-
tor node by one of two ways. Either the monitor will send the control token directly to the

receiving node or it will allow the receiving node to write response data onto the bus.

10.3.3.2. Activities Initiated By a Primitive Finishing Execution

A primitive that has finished execution of a data block will be in a mode where it will
seek control of the message bus when it is offered and attempt to send off data blocks as
long as it has data to send. It may receive new data and generate additional blocks of data,
in which case it will retain a control-hungry character until its output queue is empty. In
typical operation, nodes will generally have something on their output queue to be sent, and

will in general seck control when it is offered.

-203 -

10.3.3.2.1. Seceking Control

A node secks control by deciding to participate in a bidding process for control passing
that is initiated by the current message bus controller. The decision to participate is made by
the ICU Control after inspection of its output qucue. It subscqently instructs the attached

MCU 1o engage in the bid for control or to ignore the ensuing bid process.

10.3.3.2.2. Seeking Receivers for Data

Receivers are sought for data by posting messages that a bid will take place for a
specific block of data. The data block is identified by a link identification number which
references the receive table, which in tum indicates the algorithmic instance destination of
the block, specifications of the type and function of the next-needed primitive, and some
protocol related information. It is also identified by a frame number, which gives temporal
reference to data. The controlling node posts a bid request message and proceeds 1o initiate
a bidding process. The bidder that will be granted the block is the one which has an
assigned address which places it logically to the right of the current master; the assigned
address is essentially a geographical positioning of the node in a logical ring of all nodes.
When a bidder has been found, a data transfer is set up by finding an available data channel,
informing the receiver where to listen, and then beginning a transfer of data onto the bus.

When there are no more receivers for a block of data, the memory for that block is freed.

10.3.3.3. Seeking Next Controller

A node may not hog data or message channels. To ensure this, a restriction has been
set on the number of transfers that an ICU may attempt. In one instance of control of the
message bus, a node may attempt to send all links that are encompassed in one algorithmic
instance/frame. After that, even if no links could be sent, the node must pass control of the

message bus. This is done by sending a message that a bid for control is about to occur.

The controller then initiates a bidding process and looks for the node which is logically to

the right that wants to gain control. It then passes control to that node.

10.3.4. Summary

This chapter has presented an overview of ICU Logical Control functional characteris-
tics, and some of the justifications for its structural design. Detailed operational information
and structural information is presented in subsequent chapters of the d-ALPS Initial Design

Specification.

3
C)

)

(6)
M
(8)

%)

(10)

an

(12)

- 205 -

References for Appendix A

R. R. Shively, ‘‘A Digital Processor to Generate Spectra in Real-Time,”” /EEE Trans.
Computers, C-17, N5, 1968.

T.E. Curis, J.T. Wickendon and A.G. Constantinides, *‘Control Ordered Sonar
Hardware (COSH)- A Hardware Based Signal Processing Graph Implementation,’’
Proc. IEEE, vol 131, Part F, pp 584-592, October, 1982

N. H. Brown, ‘‘The EMSP Data Flow Computer,”’ Proc. Int. Conf. Systems Science,
Honolulu, 1984.

Y. S. Wuand L. J. Wu, **An Architectural Framcwork for Signal Flow,”’ Proc. Inter-
national Conference on Digital Signal Processing, Florence, ltaly, 1984

D. C. A. Bulterman, K. L. Robbins, and D. L. Leibholz, ‘‘Self-Scheduling Distributed
Processing Architecture for Real-Time Signal Processing Applications,”” Brown
Universiry August, 1986

J. A. Stankovic, “‘Issues in Distributed Processing,”’ /EEE Trans. Computers, C-33,
N12, December, 1984.

P. Markenscoff, ‘‘Deterministic Model for Evaluating the Performance of a Multipro-
cessor System with a Shared Bus'’ /EEE Trans. Computers, March, 1984,

E. D. Jensen, *‘The Honeywell Experimental Distributed Processor—An Overview,’’
IEEE Computer, V11, N1, January, 1978.

D.C.A. Bulterman, ‘‘CASE: An Integrated Design Environment for Algorithm-Driven
Architectures,”” 24th IEEE/ACM Design Automation Conference, (Submitted for
presentation), June, 1987

D. C. A. Bulterman and H. Gardillo, ‘‘A Distributed Architecture for an Image Pro-
cessing Application,’’ Brown University, (Submitted for Presentation), July, 1986.

Y. S. Wu, “‘Digital Signal Processor Architecture: A Historical Perspective,’’ IEEE-
Academia Sinica Workshop on Acoustics, Speech, and Signal Proc., Beijing, 1986.

D. C. A. Bulterman and E. Manolis, ‘‘Application-level Performance Monitoring for
Special Purpose Networks,’’ IEEE Networks, V1, N4, 1987.

{Afsh83]
[Bara85]
[Beiz78)

[Brig78]

[Bult86]

[Chou82]

[{Chow79]

[Demp82]

[Dubo82]

[Efe82]

[Fine84]

[Fren82]

[Fuch85]
(Garr87]

{Gaud8s)

- 206 -

Bibliography

P.V. AFSHARI AND S.C. BRUELL, ‘‘On thc Load Balancing Bus Access
Scheme,”" Transactions on Computers C-32, 8, IEEE (Aug 1983), 626-636.

AMNON BARAK, ‘‘Distributed Load Balancing for a Multicomputer,”’
Software Practice and Experience 15, 9 (Sept 1985), 901-913.

BORIS BEIZER, Microanalysis of Computer System Performance, Van Nos-
trand Reinhold Company, New York, 1978.

FAYE BRIGGS, ‘‘Performance of Memory Configurations for Parallel-
Pipelined Computers,’’ in Proc. S5th Ann. Symp. Comp. Arch., April 1978,
pp. 202-209.

DICK C.A. BULTERMAN AND KENNETH L. ROBBINS, ‘‘The Design and
Implementation of a Real-Time and Fault Tolerant Network for ALPS-based
Digital Signal Processing,’’ in LEMS Technical Report, Laboratory For
Engineering Man/Machine Systems, Brown University, June 1986.

TIMOTHY CHOU AND JACOB ABRAHAM, ‘‘Load Balancing in Distributed
Systems,’’ Transactions on Software Engineering SE-8, 4, 1EEE (July
1982), 401412,

YUAN-CHIEH CHOW AND WALTER KOHLER, ‘‘Models for Dynamic Load
Balancing in a Heterogeneous Multiple Processor System,’”’ Transactions on
Computers C-28, IEEE (May 1979), 354-361.

M. A. DEMPSTER, ED., Deterministic Sequencing and Scheduling, Reidel
Publishing, Dordrecht, Holland, 1982.

MICHEL DUBOIS AND FAYE BRIGGS, ‘‘Performance of Synchronized Itera-
tive Processes in Multiprocessor Systems,’’ Transactions on Software
Engineering SE-8, 4, IEEE (July 1982), 419-431.

KEMAL EFE, ‘‘Heuristic Models of Task Assignment Scheduling in Distri-
buted Systems,’’ Computer, IEEE (June 1982), 50-56.

MICHAEL FINE AND FOUAD TOBAGI, ‘‘Demand Assignment Multiple Access
Schemes in Broadcast Bus Local Area Networks,'’ Transactions on Comput-
ers C-33, 12, [EEE (December 1984), 1130-1158.

SIMON FRENCH, Scheduling and Sequencing: An Introduction to the
Mathematics of the Job-Shop, Ellis Horwood Limited, W. Sussex, England,
1982.

K. FUCHS, ‘‘Memory Constrained Task Scheduling on a Network of Dual
Processors,”* Journal of the ACM (Jan 1985), 102-129.

WILLIAM J. GARRISON, Network [I.5 User’s Manual, Version 3 , CACI,
Inc., Los Angeles (June 1987).

JEAN-LUC GAUDIOT, REX W. VEDDER, GEORGE K. TUCKER, DENNIS FINN,
AND MICHAEL L. CAMPBELL, ‘‘A Distributed VLSI Architecture for
Efficient Signal and Data Processing,’’ Transactions on Computers C-34,
12, IEEE (Dccember 1985), 1072-1087.

[Gold86]
(Grap84]

{Grou87]

[Hart86]

[Hsia82]
[Hwan84]

[Kinn78]

[Knut68]

[Leib87]

[Leib86]

[Liu78]

{Liu74]

[Ma84]

[Manng84]

{Mano]

{Mark84]

- 207 -

DEBRA B. GOLDBERG, User's Guide for the CASE Design Capture System,
LEMS/NDSG Technical Memo, Brown University, October 1986.

MENTOR GRAPHICS, INC., Mentor Graphics IDEA System’
Manuals September 1984,

NETWORKED AND DISTRIBUTED SYSTEMS GROUP, ‘‘distributed-ALPS Ini-
tial Design Specification,”’ in LEMS/NDSG Technical Memo/Report to Naval
Research Laboratory under contracts N00014-85-K2002 and N0O0OI14-86-
K2015, Laboratory For Engincering Man/Machine Systems, Brown Univer-
sity, June 1987.

IIRO HARTIMO, KLAUS KRONLOF, OLLI SIMULA, AND JORMA SKYTTA,
‘“DFSP: A Data Flow Signal Processor,”’ Transactions on Computers C-35,
1, IEEE (January 1986), 23-33.

J. C. HS1AO AND DAVID S. CLEAVER, Management Science, Houghton
Mifflin Company, Boston, MA, 1982.

KAl HWANG AND FAYE BRIGGS, Computer Architecture and Parallel Pro-
cessing, McGraw-Hill Book Company, New York, 1984.

L.L. KINNEY AND R.G. ARNOLD, ‘‘Analysis of a Multiprocessor System
with a Shared Bus,”” in Proc. 5th Ann. Symp. Comp. Arch., April 1978, pp.
89-95.

DONALD E. KNUTH, Fundamental Algorithms , Addison-Wesley, Reading,
MA, 1968.

DANIEL LEIBHOLZ AND DICK C. A. BULTERMAN, ‘‘distributed-ALPS High
Level Logical Control Architecturre: Initial Design Specification,”’ in
LEMS/NDSG Technical Report, Laboratory For Engineering Man/Machine
Systems, Brown University, June 1987.

DANIEL LEIBHOLZ, A PMS-level Simulator for d-ALPS Systems,
LEMS/NDSG Technical Memo, Brown University, November 1986.

JANE W. S. LIu AND C. L. LU, ‘‘Performance Analysis of Multiprocessor
Systems Containing Functionally Dedicated Processors,’’ Acta Informatica
10, 1 (1978), 95-104.

JANE W. S. LIV AND C. L. LIU, Bounds on Scheduling Algorithms for
Heterogeneous Computing Systems, Department of Computer Science,
University of Ilinois, Urbana, Illinois, June 1974.

RICHARD PERNG-YI MA, ‘A Model to Solve Timing-Critical Application
Problems in Distributed Computing Systems,’’ Computer C-33, IEEE (Jan
1984).

REINHARD MANNER, ‘‘Hardware Task/Processor Scheduling in a Polypro-
cessor Environment,'’ Transactions on Computers C-33, IEEE (July 1984),
626-636.

EVA MANOLIS, *‘Simulation System and Model for a Class of Distributed-
Control Muitiprocessor Architectures,’’ Masters Thesis , Brown University
Division of Engineering , Providence, RI (May 1987).

PAULINE MARKENSCOFF, ‘A Deterministic Model for Evaluating the Perfor-

mance of a Multiprocessor System with a Shared Bus,'’ Transactions on
Computers C-33, 3, IEEE (March 1984).

[Mazz83)

(McCo87]

[(Mint81]

(Mold86]

[Mona84]}

[Mott83]
[Mull185]
[Pate78]

(Ramag4]

[Stan84)
{Ston78]
[Ston77]

[Taka83]

(Thom86]

[Vrsa84]

[Wu84]

- 208 -

J. MazzoLA, ‘‘Heunstic Procedure for Allocating Tasks in Fault Tolcrant
Distributed Computing Systems,”" Naval Research Logistics Quarterly (Sept
83), 493-504.

RODERICK MCCONNELL, A Discrete Event Simulator for the Junel d-ALPS
Architecture, LEMS/NDSG Technical Memo, Brown University, December
1987.

FRED MINTZER, ‘‘Parallel and Cascade Microprocessor Implementations for
Digital Signal Processing,”’ Transactions on Acoustics, Speech, and Signal
Processing ASSP-29, IEEE (Oct 1981), 1018-1027.

DAN 1. MOLDOVAN AND JOSE A. B. FORTES, ‘‘Partitioning and Mapping
Algorithms into Fixed Size Systolic Arrays,”” Transactions on Computers
C-35, IEEE (January 1986), 1-12.

O. G. MONAKHOV, *‘Distributed Dynamic Resource Allocation In Computer
Systems With a Programmable Structure,”” Aveomatika i Vychislitel’ naya
Tekhnika 18, 3 (1984), 9-17.

JOE L. MOTT, ABRAHAM KANDEL, AND THEODORE P. BAKER, Discrete
Mathematics for Computer Scientists, Prentice-Hall, Reston, VA (1983).

SAPE J. MULLENDER, Principles of Distributed Operating System Design,
Mathematisch Centrum, Amsterdam (1985).

J. H. PATEL, *‘Pipclines with Internal Buffers,”” Proceedings of the Sth
Annual Symposium on Computer Architecture (April 1978), 249-254.
KRITHIVASAN RAMAMRITHAM AND JOHN €7. ..0ovic, “Dynamic Task
Scheduling in Hard Real-Time Distributed Sysicms,' Software, IEEE (July
1984), 65-75.

JOHN STANKOVIC, ‘‘*A Perspective on Distributed Computer Systems,’’
Transactions on Computers C-33, 12, IECE (December 1984), 1102-1114.
H.S. STONE AND SHAHID BOKHARI, *‘Control of Distributed Processes,’’
Computer, IEEE (July 1978), 97-106.

H.S. STONE, ‘‘Multiprocessor Scheduling With the Aid of Network Flow
Graphs,’’ Transactions on Software Engineering SE-3, 1, IEEE (Jan 1977).
A. TAKAGI, S. YAMADA, AND S. SUGAWARA, ‘‘CSMA/CD with Determinis-
tic Contention Resolution,'* Journal Select. Areas Commun. SAC-1, 5, IEE
(Nov 1983).

ALEXANDER THOMASIAN, ‘‘Analytic Queueing Network Models For Parallel
Processing of Task Systems,”’ Transactions on Computers C-35, 1EEE
(December 1986), 1045-1054.

DANIEL VRSALOVICJ, ‘‘Performance Prediction for a Multiprocessor Sys-
tem,’’ in lnternational Conference on Parallel Processing, 1984.

Y.S. WU AND L.J. WU, “‘An Architectural Framework for Signal Flow,”’ in
Proc. Int’'l Conf. on Signal Processing, September 1984,

